Sausio 1 dieną pradėtame eksploatuoti smėlio karjere buvo 80 000 m3 smėlio. Kasmet
planuojama iškasti 20 % praėjusių metų gale karjere likusio smėlio. Kiek...
Raskite didžiausią sveikąjį lygties $$\sqrt {x^{2}-4\cdot x+12} = 3$$ sprendinį.
Sprendimas.
Dėžėje yra raudoni, mėlyni ir geltoni rutuliukai. Iš dėžės atsitiktinai išimamas vienas rutuliukas, lape užrašoma jo spalva ir jis padedamas atgal į dėžę....
Duotoje koordinačių sistemoje nubraižykite funkcijų f(x) = 2x ir g(x) = 1.5x + 1 grafikus.
Sprendimas:
Raskime bent po du kiekvieno grafiko taškus.
f(x)...
Kiekvienas skaičius Tn - aritmetinės progresijos pirmųjų n narių suma.
a1 = 1, an=18.
an = n.
Aritmetinės progresijos pirmųjų narių sumos...
Paveiksle pavaizduotos dvi skritulio, kurio spindulio ilgis lygus 5, išpjovos. Mažesniosios išpjovos kampas yra 72 laipsnių didumo.
1. Parodykite, kad...
Piramidės pagrindas yra lygiašonė trapecija, kurios pagrindų ilgiai yra 6 ir 18. Piramidės tūris lygus 14. Į piramidę įbrėžtas kūgis (žr. pav.).
1....
10*10*10*10 = 104
Atsakymas: C
Kūgio pagrindo spindulys r, sudaromoji L = 6.
$$\frac{r}{L} = cos(a)$$
$$r = cos(a)\cdot L = 6\cdot cos(a)$$ (1)
kai $$a = \frac{\pi}{3}$$
$$r = 6\cdot cos(\frac{\pi}{3}) = \frac{1}{2}\cdot 6 = 3$$...
Išspręskite nelygybę 5 - 2x <= 13
A (-∞; -9] B (-∞; -4] C [-9; +∞) D [-4; +∞)
Duota funkcija g(x) = x3 - 6x2.
1. Apskaičiuokite g ' (2).
Vietoj x statom 2; vietoj y statom -1:
$$y = -4\cdot x+2\cdot a-7$$
$$-1 = -4\cdot 2+2\cdot a-7$$
$$-1+4\cdot 2+7 = 2\cdot a$$
$$14 = 2\cdot a$$...
Pagrindas - lygiakraštis trikampis. Lygiakraščio trikampio plotas $$S = \frac{a^{2}\cdot \sqrt {3}}{4}$$
$$S = \frac{6^{2}\cdot \sqrt {3}}{4} = \frac{36\cdot \sqrt {3}}{4} = 9\cdot \sqrt {3}$$...
Taisyklingosios trikampės piramidės ABCS tūris lygus 8, piramidės aukštinė SO yra $$2\cdot \sqrt {3}$$ ilgio. Apskaičiuokite piramidės pagrindo ABC aukštinės...
Lygiagretainio ABCD kampas A yra 35 laipsnių didumo. Apskaičiuokite kampo B didumą.
Tiesės AD ir BC lygiagrečios, kampai A ir B vienašaliai,...
Taškas O yra apie trikampį ABC apibrėžto apskritimo centras. Apskritimo spindulio ilgis lygus 6, ∠BCA = 30°, o ∠CAB = 60°.
1. Apskaičiuokite AB ilgį.
2....
Sekos bendrasis narys užrašomas formule an = 3n -1 (n = 1, 2, 3,...). Šios sekos penktasis narys a5 yra lygus:
A 5 B 14 C 15 D 34
Trys dviratininkai kas valandą išvažiuoja iš tos pačios vietos ir važiuoja viena kryptimi.
Pirmojo dviratininko greitis 12 km/h, antrojo – 10 km/h....
Norint rasti geometrinės progresijos vardiklį, užteks rasti pirmo ir antro narių santykį $$q = \frac{c}{b}$$
Aritmetinės progresijos vidurinis narys...
Supakuotos trys vienodos bandelės kainavo 1 Eur. Pritaikius 40 % nuolaidą, vienos bandelės kaina yra:
A 0,1 Eur B 0,13 Eur C 0,2 Eur ...
$$\frac{1}{a}$$ yra neigiamas, $$\frac{1}{b}$$ teigiamas, bet mažesnis už 1.
Stačiakampis ABCD, kurio kraštinių AB ir AD ilgiai atitinkamai lygūs 8 ir 6, pasukamas pagal laikrodžio rodyklę apie tašką D taip, kad taškai A, D ir F būtų...
Skaičius $$|3-\sqrt {8}|-|\sqrt {8}-4|$$ lygus:
A $$-2\cdot \sqrt {8}+1$$ B - 1 C $$2\cdot \sqrt {8}-1$$ D 7
...
Išspręskite nelygybę $$x^{2}\cdot (x+1) > 0$$
A (-1; 0) U (0; +∞)
B (-∞; 0) U (0;1)
C (-∞; -1) U (-1; 0)
D (0;1) U (1; +∞)
Lygties sprendiniai x =...
$$(4\cdot x^{3}-9\cdot x^{2}+6\cdot x)' = (4\cdot x^{3})'-(9\cdot x^{2})'+(6\cdot x)' = 12\cdot x^{2}-18\cdot x+6$$
Atsakymas: $$12\cdot x^{2}-18\cdot x+6$$
2021 valstybinio matematikos egzamino sprendimai
2020 valstybinio matematikos egzamino sprendimai
2019 valstybinio matematikos egzamino sprendimai
2018 valstybinio matematikos egzamino sprendimai
2017 valstybinio matematikos egzamino sprendimai
2016 valstybinio matematikos egzamino sprendimai
2015 valstybinio matematikos egzamino sprendimai
2014 valstybinio matematikos egzamino sprendimai
2014 PUPP matematikos egzamino sprendimai
2014 valstybinio bandomojo matematikos egzamino sprendimai
2013 valstybinio matematikos egzamino sprendimai
∠SBA = 30°
tg ∠SBA = $$\frac{SA}{AB}$$
$$tg(30) = \frac{h}{AB}$$
$$\frac{\sqrt {3}}{3} = \frac{h}{AB}$$
$$AB = \frac{3\cdot h}{\sqrt {3}} = \frac{3\cdot h\cdot \sqrt {3}}{3} = h\cdot \sqrt {3}$$
Apskaičiuokite $$(0.025)^{lg(2)}\cdot (0.04)^{lg(2)}$$
A $$\frac{1}{4}$$ B $$\frac{1}{6}$$ C $$\frac{1}{8}$$ D $$\frac{1}{16}$$
$$cos(A)^{2}-1 = (1-sin(A)^{2})-1 = (1-(\frac{1}{4})^{2})-1 = (1-\frac{1}{16})-1 = 1-\frac{1}{16}-1 = -\frac{1}{16}$$
Atsakymas: C $$-\frac{1}{16}$$