Sprendimas:
∠SBA = 30°
tg ∠SBA = $$\frac{SA}{AB}$$
$$tg(30) = \frac{h}{AB}$$
$$\frac{\sqrt {3}}{3} = \frac{h}{AB}$$
$$AB = \frac{3\cdot h}{\sqrt {3}} = \frac{3\cdot h\cdot \sqrt {3}}{3} = h\cdot \sqrt {3}$$
Atsakymas: AB = $$h\cdot \sqrt {3}$$
-----------------------------------------------------------------
Sprendimas:
∠SCA = 45°, △SCA - status, lygiašonis, todėl AC = AS = h;
Žinome visas tris trikampio △ABC kraštines ir kampą ∠BAC, pritaikysime kosinusų teoremą:
$$BC^{2} = AC^{2}+AB^{2}-2\cdot AC\cdot AB\cdot cos(BAC)$$
$$105^{2} = h^{2}+(h\cdot \sqrt {3})^{2}-2\cdot h\cdot h\cdot \sqrt {3}\cdot cos(150)$$
$$105^{2} = h^{2}+3\cdot h^{2}-2\cdot h\cdot h\cdot \sqrt {3}\cdot cos(150)$$
$$105^{2} = h^{2}+3\cdot h^{2}+\frac{2\cdot h\cdot h\cdot \sqrt {3}\cdot \sqrt {3}}{2}$$
$$105^{2} = h^{2}+3\cdot h^{2}+\frac{2\cdot h\cdot h\cdot 3}{2}$$
$$105^{2} = h^{2}+3\cdot h^{2}+3\cdot h^{2}$$
$$105^{2} = 7\cdot h^{2}$$
$$(15\cdot 7)^{2} = 7\cdot h^{2}$$
$$h^{2} = \frac{15^{2}\cdot 7^{2}}{7}$$
$$h^{2} = 15^{2}\cdot 7$$
$$h = \sqrt {15^{2}\cdot 7}$$
$$h = 15\cdot \sqrt {7}$$
Atsakymas: $$15\cdot \sqrt {7}$$