23 uždavinys

22 uždavinys24 uždavinys

Sprendimas:

∠SBA = 30° 

tg ∠SBA = SAAB\frac{SA}{AB}

tg(30)=hABtg(30) = \frac{h}{AB}

33=hAB\frac{\sqrt {3}}{3} = \frac{h}{AB}

AB=3h3=3h33=h3AB = \frac{3\cdot h}{\sqrt {3}} = \frac{3\cdot h\cdot \sqrt {3}}{3} = h\cdot \sqrt {3}

Atsakymas: AB = h3h\cdot \sqrt {3}

-----------------------------------------------------------------

Sprendimas:

∠SCA = 45°, △SCA - status, lygiašonis, todėl AC = AS = h;

Žinome visas tris trikampio △ABC kraštines ir kampą ∠BAC, pritaikysime kosinusų teoremą:

BC2=AC2+AB22ACABcos(BAC)BC^{2} = AC^{2}+AB^{2}-2\cdot AC\cdot AB\cdot cos(BAC)

1052=h2+(h3)22hh3cos(150)105^{2} = h^{2}+(h\cdot \sqrt {3})^{2}-2\cdot h\cdot h\cdot \sqrt {3}\cdot cos(150)

1052=h2+3h22hh3cos(150)105^{2} = h^{2}+3\cdot h^{2}-2\cdot h\cdot h\cdot \sqrt {3}\cdot cos(150)

 1052=h2+3h2+2hh332105^{2} = h^{2}+3\cdot h^{2}+\frac{2\cdot h\cdot h\cdot \sqrt {3}\cdot \sqrt {3}}{2}

 1052=h2+3h2+2hh32105^{2} = h^{2}+3\cdot h^{2}+\frac{2\cdot h\cdot h\cdot 3}{2}

 1052=h2+3h2+3h2105^{2} = h^{2}+3\cdot h^{2}+3\cdot h^{2}

 1052=7h2105^{2} = 7\cdot h^{2}

 (157)2=7h2(15\cdot 7)^{2} = 7\cdot h^{2}

h2=152727h^{2} = \frac{15^{2}\cdot 7^{2}}{7}

 h2=1527h^{2} = 15^{2}\cdot 7

 h=1527h = \sqrt {15^{2}\cdot 7}

 h=157h = 15\cdot \sqrt {7}

Atsakymas: 15715\cdot \sqrt {7}

22 uždavinys24 uždavinys