
Sprendimas:
Kūgio pagrindo spindulys r, sudaromoji L = 6.
$$\frac{r}{L} = cos(a)$$
$$r = cos(a)\cdot L = 6\cdot cos(a)$$ (1)
kai $$a = \frac{\pi}{3}$$
$$r = 6\cdot cos(\frac{\pi}{3}) = \frac{1}{2}\cdot 6 = 3$$
Šoninio paviršiaus plotas $$\pi\cdot r\cdot L = \pi\cdot 3\cdot 6 = 18\cdot \pi$$
Atsakymas: 18π

Sprendimas:
Kūgio aukštinė h.
$$\frac{h}{L} = sin(a)$$
$$h = sin(a)\cdot L = sin(a)\cdot 6 = 6\cdot sin(a)$$ (2)
Kūgio tūrio formulė $$V = \frac{1}{3}\cdot \pi\cdot r^{2}\cdot h$$
Į ją statome (1) ir (2) gautas išraiškas:
| 1 |
| / 3 |
* r^2* h = 
| 1 |
| / 3 |
* r^2* h = $$\frac{1}{3}\cdot \pi\cdot r^{2}\cdot h$$ = 






Paaiškinimas: | 1 |
| / 3 |
* ( 6* cos(a))^2* h = $$\frac{1}{3}\cdot \pi\cdot (6\cdot cos(a))^{2}\cdot h$$ = 






Paaiškinimas: | 1 |
| / 3 |
* ( 6* cos(a))^2* 6* sin(a) = $$\frac{1}{3}\cdot \pi\cdot (6\cdot cos(a))^{2}\cdot 6\cdot sin(a)$$ = 





| 1 |
| / 3 |
* 36* cos(a)^2* 6* sin(a) = $$\frac{1}{3}\cdot \pi\cdot 36\cdot cos(a)^{2}\cdot 6\cdot sin(a)$$ = 





| 1 |
| / 3 |
* cos(a)^2* 6* sin(a) = $$\frac{1}{3}\cdot 36\cdot \pi\cdot cos(a)^{2}\cdot 6\cdot sin(a)$$ = 





* cos(a)^2* 6* sin(a) = $$12\cdot \pi\cdot cos(a)^{2}\cdot 6\cdot sin(a)$$ = 





* cos(a)^2* sin(a) = $$12\cdot 6\cdot \pi\cdot cos(a)^{2}\cdot sin(a)$$ = 





* cos(a)^2* sin(a) = $$72\cdot \pi\cdot cos(a)^{2}\cdot sin(a)$$ = 





* (1- sin(a)^2)* sin(a) = $$72\cdot \pi\cdot (1-sin(a)^{2})\cdot sin(a)$$ = 





* ( 1* sin(a)- sin(a)^2* sin(a)) = $$72\cdot \pi\cdot (1\cdot sin(a)-sin(a)^{2}\cdot sin(a))$$ = 





* (sin(a)- sin(a)^2* sin(a)) = $$72\cdot \pi\cdot (sin(a)-sin(a)^{2}\cdot sin(a))$$ = 





* (sin(a)- sin(a)^3)$$72\cdot \pi\cdot (sin(a)-sin(a)^{3})$$





Sprendimas:
Tūrio išvestinę prilyginame nuliui:
* (sin(a)- sin(a)^3))′ =

* (sin(a)- sin(a)^3))′ = 0$$(72\cdot \pi\cdot (sin(a)-sin(a)^{3}))'$$ = $$0$$





* (sin(a)- sin(a)^3)′ = 0$$72\cdot \pi\cdot (sin(a)-sin(a)^{3})'$$ = $$0$$






Paaiškinimas:
* (cos(a)- 3* sin(a)^2* sin(a)′) = 0$$72\cdot \pi\cdot (cos(a)-3\cdot sin(a)^{2}\cdot sin(a)')$$ = $$0$$






Paaiškinimas:
* (cos(a)- 3* sin(a)^2* cos(a)) = 0$$72\cdot \pi\cdot (cos(a)-3\cdot sin(a)^{2}\cdot cos(a))$$ = $$0$$





* (cos(a)- 3* sin(a)^2* cos(a)) = 0$$\pi\cdot (cos(a)-3\cdot sin(a)^{2}\cdot cos(a))$$ = $$0$$


















Paaiškinimas: 























π![]() |
| / 2 |
* k$$a$$ = $$\frac{\pi}{2}+\pi\cdot k$$























| 1 |
| / 3 |






| 1 |
| / 3 |
sin(a)^2)$$\sqrt {\frac{1}{3}}$$ = $$\sqrt {sin(a)^{2}}$$





| 1 |
| / 3 |






| 1 |
/ saknis( 3) |





$$\frac{1}{\sqrt {3}} = \frac{\sqrt {3}}{3}$$

Sprendimas:
* (sin(a)- sin(a)^3) = 
* (sin(a)- sin(a)^3) = $$72\cdot \pi\cdot (sin(a)-sin(a)^{3})$$ = 






Paaiškinimas:
* (sin(arcsin( saknis( 3) |
| / 3 |
saknis( 3) |
| / 3 |






* ( saknis( 3) |
| / 3 |
saknis( 3) |
| / 3 |






* ( saknis( 3) |
| / 3 |
saknis( 3) |
| / 3 |






* ( saknis( 3) |
| / 3 |
saknis( 3) |
| / 9 |






* ( 2* saknis( 3) |
| / 9 |






72* π * 2* saknis( 3) |
| / 9 |






π * 72* 2* saknis( 3) |
| / 9 |






* 16* saknis(
3) = $$\pi\cdot 16\cdot \sqrt {3}$$ = 





3)* π
$$16\cdot \sqrt {3}\cdot \pi$$




Atsakymas: $$16\cdot \sqrt {3}\cdot \pi$$