• Matematikos egzaminai
    • 2021 valstybinis
    • 2020 valstybinis
    • 2019 valstybinis
    • 2018 valstybinis
    • 2017 valstybinis
    • 2016 valstybinis
    • 2015 valstybinis
    • 2014 valstybinis
    • 2014 PUPP
    • Pasiruošk egzaminui
    • 2014 bandomasis
    • 2013 valstybinis
  • Matematikos formulės
  • Fizikos formulės
  • Įrankiai
2014 valstybinis
8 uždavinys

Sprendimas.

1) 2x+5 = 0 

x = -2.5

2) $$\sqrt {x+2} = 0$$ 

x+2 = 0

x = -2

Apibrėžimo sritis x + 2 >= 0 t.y. x >= -2.

Į apibrėžimo sritį patenka tik vienas...

2015 valstybinis
5 uždavinys

Vandens čiaupo pajėgumas yra toks, kad stačiakampio gretasienio formos baseinas, kurio matmenys yra a, b ir c, pripildomas per 1 valandą. Per kiek laiko...

2014 valstybinis
23 uždavinys

1. Apskaičiuokite f(x) reikšmę, kai  $$x = \frac{\pi}{2}$$

Sprendimas.

$$sin(x)-cos(2\cdot x)$$ $$$$
...

2017 valstybinis
5 uždavinys

Sprendimas:

10*10*10*10 = 104

Atsakymas: C

...
2020 valstybinis
19 uždavinys

Sprendimas:

$$log_{5}(x-7) = 0$$

$$log_{5}(x-7) = log_{5}(5^{0})$$

$$log_{5}(x-7) = log_{5}(1)$$

$$x-7 = 1$$

$$x = 8$$

x = 8 patenka į apibrėžimo...

2018 valstybinis
19 uždavinys

Duota n skirtingų natūraliųjų skaičių, sudarančių didėjančią aritmetinę progresiją. Skaičius n yra ne mažesnis už 3.

1. Ar šių skaičių suma gali būti lygi...

2014 PUPP
15 uždavinys

Mieste yra kino teatras. Jame yra kelios kino salės, kavinė. Šis teatras yra labai mėgstamas, tad jame apsilanko daugybė žiūrovų. 

1. Teatro administracija...

2013 valstybinis
13 uždavinys

f(x) =$$\sqrt {2}\cdot x^{2}+\sqrt {2}$$. Apskaičiuokite f'(√2)

Sprendimas.

$$(\sqrt {2}\cdot x^{2}+\sqrt {2})'$$ $$$$

...
2019 valstybinis
6 uždavinys

Sprendimas:

$$cos(A)^{2}-1 = (1-sin(A)^{2})-1 = (1-(\frac{1}{4})^{2})-1 = (1-\frac{1}{16})-1 = 1-\frac{1}{16}-1 = -\frac{1}{16}$$

Atsakymas: C $$-\frac{1}{16}$$

...
2019 valstybinis
1 uždavinys

Sprendimas:

Trys skaičiai: 4, 8, 12 dalijasi iš 4. $$\frac{3}{15} = \frac{1}{5}$$

Atsakymas: B:

...
2014 PUPP
8 uždavinys

Išspręskite nelygybę 5 - 2x <= 13

A (-∞; -9]     B (-∞; -4]       C [-9; +∞)      D [-4; +∞)

Sprendimas.

 

$$5-2\cdot x$$  ≤ $$13$$
...
2021 valstybinis
4 uždavinys

Sprendimas:

Panašūs trikampiai

$$\frac{1}{1.25} = \frac{x}{2}$$.

$$x = \frac{1\cdot 2}{1.25} = 1.6$$.

Atsakymas: A

...
2016 valstybinis
23 uždavinys

100 metrų plaukimo varžybose dalyvavo Rūta, Julija ir Džesika. Rūta savo finišo momentu lenkė Juliją 2 metrais, o Julija savo finišo momentu lenkė Džesiką 1...

2014 bandomasis
1 uždavinys

2004  metais  miestelyje  gyveno  5000  gyventojų.  Po  penkerių  metų  gyventojų  skaičius  miestelyje padidėjo 2 %, o dar po penkerių metų – dar 4 %. Kiek...

2015 valstybinis
15 uždavinys

Lentelėje pateikta informacija apie funkcijos f (x) išvestinės f ' (x) reikšmes.

1. Užrašykite funkcijos f (x) reikšmių didėjimo intervalą (-us).

...

2021 valstybinis
15 uždavinys

Sprendimas:

Aibės A pirminiai skaičiai yra B = {3; 7; 13}.

Jų suma yra $$3+7+13 = 23$$

Atsakymas: 23

...
2020 valstybinis
15 uždavinys

Sprendimas:

Grupavimo būdu suskaidome dauginamaisiais. Iš $$a\cdot c+a\cdot d$$ iškeliame a, iš $$b\cdot d+b\cdot c$$ iškeliame b.

Po to iškeliame skliaustus $$(c+d)$$:

...

2020 valstybinis
10 uždavinys

Sprendimas:

Keičiame pirmojo logaritmo pagrindą iš a į 2:

$$log_{a}(8) = \frac{log_{2}(8)}{log_{2}(a)} = \frac{3}{log_{2}(a)}$$

Sudauginus su antruoju logaritmu, gauname

...

2015 valstybinis
24 uždavinys

Taisyklingosios keturkampės piramidės, kurios visos briaunos lygios, tūris lygus $$972\cdot \sqrt {2}$$ cm3. Plokštuma, lygiagreti piramidės pagrindui ABCD,...

Pasiruošk egzaminui

Išspręskite lygtį $$sin(x)\cdot ctg(x) = 1$$

Sprendimas.

$$sin(x)\cdot ctg(x)$$  = $$1$$
...

2017 valstybinis
21 uždavinys

Sprendimas:

$$S_{1} = 4\cdot 1^{2}+4\cdot 1 = 4+4 = 8$$

Atsakymas: 8

Sprendimas:

$$S_{2n} = 4\cdot (2\cdot n)^{2}+4\cdot (2\cdot n)$$

$$S_{n} = 4\cdot n^{2}+4\cdot n$$

$$4\cdot (2\cdot n)^{2}+4\cdot (2\cdot n)$$  = $$\frac{11}{3}\cdot (4\cdot n^{2}+4\cdot n)$$
...

2020 valstybinis
22 uždavinys

Sprendimas:

Kiekvienas skaičius Tn - aritmetinės progresijos pirmųjų n narių suma.

a1 = 1, an=18.

an = n.

Aritmetinės progresijos pirmųjų narių sumos...

2013 valstybinis
26 uždavinys

Raskite didžiausią sveikąjį lygties $$\sqrt {x^{2}-4\cdot x+12} = 3$$ sprendinį.

Sprendimas.

$$\sqrt {x^{2}-4\cdot x+12}$$  = $$3$$
...

2014 PUPP
4 uždavinys

Kiek valandų turi trys savaitės?

A 252       B 432        C 504        D 576

Sprendimas.

Savaitė turi 7 dienas, diena turi 24 valandas:

...

2014 bandomasis
3 uždavinys

Paveiksle vaizduojama taisyklingoji keturkampė piramidė. Kuris teiginys yra klaidingas?

A  Piramidės pagrindas ABCD yra kvadratas.

B  Atkarpa SO statmena...

2020 valstybinis
12 uždavinys

Sprendimas:

Pagal sinusų teoremą

 $$\frac{2}{sin(30)} = \frac{x}{sin(45)}$$

  $$x = \frac{2\cdot sin(45)}{sin(30)}$$

  $$x = \frac{2\cdot \sqrt {2}}{2\cdot (\frac{1}{2})}$$

  $$x = \frac{\sqrt {2}}{\frac{1}{2}}$$...

2014 PUPP
19 uždavinys

Jonas virš vienos salės durų pamatė pakabintą girliandą. Namuose sąsiuvinio lape jis nubrėžė koordinačių ašis ir pavaizdavo duris stačiakampiu DCBE,...

2021 valstybinio matematikos egzamino sprendimai

2020 valstybinio matematikos egzamino sprendimai

2019 valstybinio matematikos egzamino sprendimai

2018 valstybinio matematikos egzamino sprendimai

2017 valstybinio matematikos egzamino sprendimai

2016 valstybinio matematikos egzamino sprendimai

2015 valstybinio matematikos egzamino sprendimai

2014 valstybinio matematikos egzamino sprendimai

2014 PUPP matematikos egzamino sprendimai

2014 valstybinio bandomojo matematikos egzamino sprendimai

2013 valstybinio matematikos egzamino sprendimai

2018 valstybinis
24 uždavinys

Automobilių stovėjimo aikštelėje iš viso yra 12 stovėjimo vietų vienoje eilėje. Į šią aikštelę atvyko 8 automobiliai. Aikštelėje vienas automobilis užima...

2014 PUPP
17 uždavinys

Trys dešimtokų klasės (10A, 10B ir 10C), prieš apsilankydamos kino teatre, susitarė sugalvoti įvairių klausimų, susijusių su šiuo kino teatru, ir juos...

2015 valstybinis
9 uždavinys

Seifo kodą turi sudaryti trys skirtingi skaitmenys, užrašyti didėjimo tvarka. Kiek tokių skirtingų kodų galima sudaryti?

A 84       B 120       C 504      D...

  • Matematikos formulės
  • Trumposios daugybos formulės
  • Kvadratinės lygtys
  • Progresijos
  • Trigonometrija
  • Tikimybių teorija
  • Statistika
  • Apskritimas, skritulys
  • Trikampiai
  • Keturkampiai, daugiakampiai
  • Figūrų plotai
  • Erdvinės figūros
  • Geometrinių figūrų lygtys
  • Įvairios
  • Kombinatorika
  • Vektoriai
  • Logaritmai
  • Fizikos formulės
  • Kinematika
  • Dinamika
  • Statika
  • Tvermės dėsniai mechanikoje
  • Skysčių ir dujų slėgis
  • Molekulinė kinetika
  • Šiluminiai reiškiniai
  • Garai, skysčiai, kietoji būsena
  • Termodinamika
  • Elektrostatika
  • Nuolatinė elektros srovė
  • Magnetinis laukas
  • Elektromagnetinė indukcija
  • Elektros srovė metaluose
  • Mechaniniai svyravimai
  • Mechaninės bangos
  • Elektromagnetiniai virpesiai
  • Kintamoji elektros srovė
  • Elektromagnetinės bangos
  • Fotometrija
  • Geometrinė optika
  • Banginė optika
  • Kvantinė optika
  • Reliatyvumo teorija
  • Atomas ir atomo branduolys
Visos teisės saugomos ©