Sprendimas:
Kampas tarp vektorių smailus, kai jų skaliarinė sandauga teigiama:
$$x_{1}\cdot x_{2}+y_{1}\cdot y_{2} > 0$$
$$2\cdot k\cdot (-1)+3\cdot 2 > 0$$
$$-2\cdot k > -6$$
...
Kiekvienas skaičius Tn - aritmetinės progresijos pirmųjų n narių suma.
a1 = 1, an=18.
an = n.
Aritmetinės progresijos pirmųjų narių sumos...
Duota n skirtingų natūraliųjų skaičių, sudarančių didėjančią aritmetinę progresiją. Skaičius n yra ne mažesnis už 3.
1. Ar šių skaičių suma gali būti lygi...
Trikampiai △DAO ir △OCB - panašūs, nes abu statūs, ir turi lygius kryžminius kampus.
Panašių trikampių atitinkamos kraštinės proporcingos:
Tuo pačiu metu iš miestelių A ir B pastoviais greičiais vienas priešais kitą išvažiavo du dviratininkai. Pirmasis važiavo iš miestelio A į miestelį B, o...
Reikia, kad iškristų 6+6.
Kad vienas kauliukas iškris šešiomis akutėmis, tikimybė yra $$\frac{1}{6}$$.
$$\frac{1}{6}\cdot \frac{1}{6} = \frac{1}{36}$$.
Atsakymas: ...
Sinusas gali įgyti reikšmes nuo -1 iki 1.
$$sin(2\cdot x)$$ įgyja reikšmes nuo -1 iki 1.
$$3\cdot sin(2\cdot x)$$ įgyja reikšmes nuo -3 iki 3.
Apibrėžimo sritis x priklauso (-∞; 4) U (4; +∞), todėl funkcija neapibrėžta taške x = 4. Vietoj x statysim 4.
Funkcija būna neapibrėžta, kai...
Taisyklingosios trikampės piramidės ABCS tūris lygus 8, piramidės aukštinė SO yra $$2\cdot \sqrt {3}$$ ilgio. Apskaičiuokite piramidės pagrindo ABC aukštinės...
$$cos(A)^{2}-1 = (1-sin(A)^{2})-1 = (1-(\frac{1}{4})^{2})-1 = (1-\frac{1}{16})-1 = 1-\frac{1}{16}-1 = -\frac{1}{16}$$
Atsakymas: C $$-\frac{1}{16}$$
Mažylis vienas tortą suvalgo per 30 min., o kartu su Karlsonu – per 5 min. Per kiek minučių Karlsonas vienas suvalgo tortą?
A 5 min. B 6 min. ...
100 metrų plaukimo varžybose dalyvavo Rūta, Julija ir Džesika. Rūta savo finišo momentu lenkė Juliją 2 metrais, o Julija savo finišo momentu lenkė Džesiką 1...
Viename iš paveikslų pavaizduotas funkcijos $$y = \sqrt {x-1}+1$$ grafikas. Kuriame?
y - šakninė funkcija, pastumta į kairę (x = x - 1)...
Keičiame pirmojo logaritmo pagrindą iš a į 2:
$$log_{a}(8) = \frac{log_{2}(8)}{log_{2}(a)} = \frac{3}{log_{2}(a)}$$
Sudauginus su antruoju logaritmu, gauname
Paveiksle pavaizduoti funkcijų f1(x) = $$x^{3}+1$$ ir f2(x) =$$\sqrt[3]{x}+1$$ grafikai intervale x >= 0.
1. Duoti grafikai kertasi. Įrodykite,...
Žinoma, kad funkcija f (x) yra lyginė, o g(x) – nelyginė. Jei f (a) = - b, g( - b) = a, kur a ≠ 0, b ≠ 0, tai g( f (- a)) + f (g(b)) lygu:
A a + b B...
Išspręskite lygtį $$\sqrt {2-x} = x$$
Sprendimas.
Pirmu vamzdžiu baseiną vandeniu galima pripildyti per 40 min, o antru – per 1 val.
Per kiek laiko bus pripildytas baseinas, jei vanduo bėgs abiem...
Apskaičiuokite $$\sqrt[6]{14-6\cdot \sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$
Pirmas, antras ir trečias skaičiai sudaro aritmetinę progresiją, todėl
pirmas skaičius lygus x, antras x + d, trečias x + 2d
x + (x + d) + (x...
Apskritimo su centru O spindulio ilgis lygus 1. ∠BOC = 90
Apskritimo stygos AB ir AC yra lygios. Apskaičiuokite pilkosios dalies ABOC plotą.
Taškas O yra apie trikampį ABC apibrėžto apskritimo centras. Apskritimo spindulio ilgis lygus 6, ∠BCA = 30°, o ∠CAB = 60°.
1. Apskaičiuokite AB ilgį.
2....
Triženklio skaičiaus skaitmenys yra iš eilės einantys skirtingi nelyginiai skaičiai, užrašyti mažėjimo tvarka. Užrašykite šį triženklį skaičių, jeigu...
Kuriame taške parabolės $$y = (x-1)^{2}$$ grafikas kerta koordinačių ašį Oy?
A (0; 1) B (1; 0) C (0; 0) D (1; 1)
Oy ašį...
5 vienodo galingumo ekskavatoriai, dirbdami kartu, gali iškasti duobę per 24 valandas. Tačiau jie pradėjo dirbti vienas po kito vienodais laiko tarpais, o...
2021 valstybinio matematikos egzamino sprendimai
2020 valstybinio matematikos egzamino sprendimai
2019 valstybinio matematikos egzamino sprendimai
2018 valstybinio matematikos egzamino sprendimai
2017 valstybinio matematikos egzamino sprendimai
2016 valstybinio matematikos egzamino sprendimai
2015 valstybinio matematikos egzamino sprendimai
2014 valstybinio matematikos egzamino sprendimai
2014 PUPP matematikos egzamino sprendimai
2014 valstybinio bandomojo matematikos egzamino sprendimai
2013 valstybinio matematikos egzamino sprendimai
Atkarpos AD ir CB kertasi taške O. Jų galai sujungti atkarpomis AB ir CD. Kampai BAD ir BCD yra lygūs. Įrodykite, kad trikampiai AOB ir COD yra panašūs.
Kraštinės AB ilgis lygus x.
Kraštinės BC ilgis lygus kx.
Pagal sinusų teoremą
$$\frac{AB}{sin(a)} = \frac{BC}{sin(2\cdot a)}$$
$$\frac{x}{sin(a)} = \frac{k\cdot x}{sin(2\cdot a)}$$
Vandens lygis d (metrais) uoste laiko momentu t paros laikotarpyje, pradedant nuo vidurnakčio, apskaičiuojamas pagal formulę
d(t) = [f]10 + 1.8 cos (π/6...