2004 metais miestelyje gyveno 5000 gyventojų. Po penkerių metų gyventojų skaičius miestelyje padidėjo 2 %, o dar po penkerių metų – dar 4 %. Kiek...
Išspręskite lygtį (x - 3)(x - 7) = 21.
A 3 ir 7
B 0 ir 10
C 10
D Sprendinių nėra
Sprendimas:
Sprendimas.
Rombo įstrižainių ilgiai yra 12 ir 16. Kam lygus šio rombo kraštinės ilgis?
A 10 B 14 C 20 D 28
Daliname įstrižaines 12 ir 16...
Aritmetinės progresijos narys yra savo kaimynų aritmetinis vidurkis:
$$a_{2} = \frac{a_{1}+a_{3}}{2}$$
$$b = \frac{a+10-a}{2}$$
$$b = \frac{10}{2}$$...
Kampo tarp vektorių a ir b didumas 120. Žinoma, kad |a| = 3, |b| = 4. Apskaičiuokite skaliarinę sandaugą $$(3\cdot \vec{a}-2\cdot \vec{b})\cdot (\vec{a}+2\cdot \vec{b})$$.
...
Trys dešimtokų klasės (10A, 10B ir 10C), prieš apsilankydamos kino teatre, susitarė sugalvoti įvairių klausimų, susijusių su šiuo kino teatru, ir juos...
1.
Ritinio tūris $$V = \pi\cdot r^{2}\cdot h$$, r = 6, aukštis h = 2x, nes vandens paviršius liečia rutuliuką.
Ritinio tūris $$V_{rit} = \pi\cdot 6^{2}\cdot 2\cdot x = 72\cdot \pi\cdot x$$...
Vektoriai $$\vec{a}+2\cdot \vec{b}$$ ir $$\vec{a}-2\cdot \vec{b}$$ statmeni, $$|\vec{a}| = 5$$. Raskite $$|\vec{b}|$$.
Kadangi vektoriai statūs, jų skaliarinė sandauga...
2 + 2 = 4;
4 + 2 = 6;
Atsakymas: D
Į lygtį g(x) = f(x) + 2 įstatykime x = 1:
g(1) = f(1) + 2. Yra žinoma, kad g(1) = $$\sqrt {3}$$, taigi
$$\sqrt {3}$$ = f(1) + 2
f(1)...
Vardiklis negali būti lygus nuliui
$$1-x$$ ≠ $$0$$
$$1-x$$ ≠ $$-1$$
$$x$$ ≠ $$1$$
Atsakymas: C:
Keletas vienodo galingumo ekskavatorių, dirbdami kartu, gali iškasti duobę per 24 valandas. Tačiau jie pradėjo dirbti vienas po kito vienodais laiko...
Paveiksle pavaizduota parabolė yra funkcijos y = f (x) grafikas. Šios funkcijos reikšmių sritis yra:
A (-∞ ; +∞ )
B (-∞ ; 3)
C (-∞ ; 2) ...
Stačiakampis ABCD, kurio kraštinių AB ir AD ilgiai atitinkamai lygūs 8 ir 6, pasukamas pagal laikrodžio rodyklę apie tašką D taip, kad taškai A, D ir F būtų...
Paveiksle pavaizduoti funkcijų f1(x) = $$x^{3}+1$$ ir f2(x) =$$\sqrt[3]{x}+1$$ grafikai intervale x >= 0.
1. Duoti grafikai kertasi. Įrodykite,...
Kurios iš žemiau užrašytų funkcijų grafiko eskizas pavaizduotas paveiksle?
A $$y = \sqrt {x}$$ B $$y = log_{2}(x)$$ C $$y = 2^{x}$$...
$$\frac{1}{t} = \frac{1}{t_{1}}+\frac{1}{t_{2}}$$
$$\frac{1}{t} = \frac{1}{9}+\frac{1}{18}$$
$$\frac{1}{t} = \frac{2}{18}+\frac{1}{18}$$
$$\frac{1}{t} = \frac{3}{18}$$
$$\frac{1}{t} = \frac{1}{6}$$
$$t = 6$$
Atsakymas: Per 6...
Viename iš paveikslų pavaizduotas funkcijos $$y = \sqrt {x-1}+1$$ grafikas. Kuriame?
y - šakninė funkcija, pastumta į kairę (x = x - 1)...
Panašūs trikampiai
$$\frac{1}{1.25} = \frac{x}{2}$$.
$$x = \frac{1\cdot 2}{1.25} = 1.6$$.
Atsakymas: A
Duota funkcija f(x) = $$x^{3}-6\cdot x^{2}+8\cdot x+6$$. Tiesė y = $$k\cdot x+b$$ yra funkcijos f (x) grafiko liestinė taške x0 = 3.
1. Apskaičiuokite k ir b reikšmes.
Duotos funkcijos f (x) = x2 ir g(x) = x + 1.
16.1. Raskite funkcijos h(x) = f (g(x)) reikšmę taške x = 1.
h(x) = (x + 1)2.
h(1) = (1 + 1)2 = 4
$$3\cdot a = 7\cdot b$$
$$a = \frac{7\cdot b}{3}$$
Vadinasi, a > b
$$2\cdot c = 11\cdot a$$
$$c = 5.5\cdot a$$
Vadinasi, c > a > b
$$5\cdot c = 4\cdot d$$
$$d = \frac{5}{4}\cdot c$$
Vadinasi, d > c > a > b
Vietoj x statom 2; vietoj y statom -1:
$$y = -4\cdot x+2\cdot a-7$$
$$-1 = -4\cdot 2+2\cdot a-7$$
$$-1+4\cdot 2+7 = 2\cdot a$$
$$14 = 2\cdot a$$...
2021 valstybinio matematikos egzamino sprendimai
2020 valstybinio matematikos egzamino sprendimai
2019 valstybinio matematikos egzamino sprendimai
2018 valstybinio matematikos egzamino sprendimai
2017 valstybinio matematikos egzamino sprendimai
2016 valstybinio matematikos egzamino sprendimai
2015 valstybinio matematikos egzamino sprendimai
2014 valstybinio matematikos egzamino sprendimai
2014 PUPP matematikos egzamino sprendimai
2014 valstybinio bandomojo matematikos egzamino sprendimai
2013 valstybinio matematikos egzamino sprendimai
Kvadrato ABCD kraštinės ilgis lygus 5. Kraštinėje BA taip pažymėtas taškas L, kad BL = 3, kraštinėje BC taškai M ir K taip pažymėti, kad BK = 4, CM = 3 ir...
Paveiksle pavaizduoti du žaidimo ratai: pirmasis padalytas į tris lygius sektorius A, B ir C, antrasis – į du lygius sektorius A ir B. Žaidžiamas toks...
Išspręskite lygtį (x + 2011)(x + 2013)(x + 2014) = (x + 2013)(x + 2014)(x + 2015).
A - 2011; - 2013; - 2014; - 2015
B - 2011; - 2015
C - 2013; - 2014
D sprendinių nėra