• Matematikos egzaminai
    • 2021 valstybinis
    • 2020 valstybinis
    • 2019 valstybinis
    • 2018 valstybinis
    • 2017 valstybinis
    • 2016 valstybinis
    • 2015 valstybinis
    • 2014 valstybinis
    • 2014 PUPP
    • Pasiruošk egzaminui
    • 2014 bandomasis
    • 2013 valstybinis
  • Matematikos formulės
  • Fizikos formulės
  • Įrankiai
2013 valstybinis
22 uždavinys

Apskritimo su centru O spindulio ilgis lygus 1.  ∠BOC = 90

Apskritimo stygos AB ir AC yra lygios. Apskaičiuokite pilkosios dalies ABOC plotą.

Sprendimas.

...

2016 valstybinis
21 uždavinys

Ronaldas svajoja motorine skraidykle apskristi pasaulį. Jis kelionę pradėtų Kuršėnuose. Ronaldas skristų taip, kad kiekvienu momentu skraidyklę ir Žemės...

2020 valstybinis
21 uždavinys

Sprendimas:

Pagrindas - lygiakraštis trikampis. Lygiakraščio trikampio plotas $$S = \frac{a^{2}\cdot \sqrt {3}}{4}$$

 $$S = \frac{6^{2}\cdot \sqrt {3}}{4} = \frac{36\cdot \sqrt {3}}{4} = 9\cdot \sqrt {3}$$...

2014 bandomasis
26 uždavinys

Paveiksle pavaizduoti funkcijų f1(x) = $$x^{3}+1$$ ir f2(x) =$$\sqrt[3]{x}+1$$ grafikai intervale x >= 0.

1. Duoti  grafikai  kertasi.  Įrodykite,...

2013 valstybinis
29 uždavinys

Šeši darbuotojai gavo dovanų 6 bilietus į teatrą, keturiuose iš jų vietos buvo nurodytos 

pirmoje eilėje. Darbuotojai dalijasi bilietus atsitiktinai juos...

2017 valstybinis
11 uždavinys

Sprendimas:

$$2^{(x+3)}$$  = $$16$$

...
2020 valstybinis
5 uždavinys

Sprendimas:

Trikampis AOB lygiakraštis (OA = OB = AB), todėl kampas ∠BAC = 60°

Atsakymas: C

...
2013 valstybinis
27 uždavinys

Taisyklingosios trikampės piramidės ABCS tūris lygus 8, piramidės aukštinė SO yra  $$2\cdot \sqrt {3}$$ ilgio. Apskaičiuokite piramidės pagrindo ABC aukštinės...

2020 valstybinis
10 uždavinys

Sprendimas:

Keičiame pirmojo logaritmo pagrindą iš a į 2:

$$log_{a}(8) = \frac{log_{2}(8)}{log_{2}(a)} = \frac{3}{log_{2}(a)}$$

Sudauginus su antruoju logaritmu, gauname

...

2013 valstybinis
31 uždavinys

Trys dviratininkai kas valandą išvažiuoja iš tos pačios vietos ir važiuoja viena kryptimi. 

Pirmojo dviratininko greitis 12 km/h, antrojo – 10 km/h....

2016 valstybinis
2 uždavinys

Lėktuvas skrenda, pučiant pastovaus greičio vėjui. Naudodamas tiek pat galios, pavėjui jis gali skristi 650 km/h greičiu, o prieš vėją gali skristi 600 km/h...

2014 PUPP
13 uždavinys

Atkarpos AD ir CB kertasi taške O. Jų galai sujungti atkarpomis AB ir CD. Kampai BAD ir BCD yra lygūs. Įrodykite, kad trikampiai AOB ir COD yra panašūs. 

...
2019 valstybinis
20 uždavinys

Sprendimas:

$$5\cdot sin(30)-cos(2\cdot 30)+1 = 5\cdot sin(30)-cos(60)+1 = \frac{5\cdot 1}{2}-\frac{1}{2}+1 = \frac{5}{2}+\frac{1}{2} = 3$$

Atsakymas: 3

...

2019 valstybinis
8 uždavinys

Sprendimas:

$$3\cdot a = 7\cdot b$$

$$a = \frac{7\cdot b}{3}$$

Vadinasi, a > b

$$2\cdot c = 11\cdot a$$

$$c = 5.5\cdot a$$

Vadinasi, c > a > b

$$5\cdot c = 4\cdot d$$

$$d = \frac{5}{4}\cdot c$$

Vadinasi, d > c > a > b

...

2021 valstybinis
16 uždavinys

Sprendimas:

Jei imtis turi modą 15, toje imtyje yra bent du skaičiai 15.

Jei keturių skaičių mediana yra 14, ir jau žinome du už ją didesnius skaičius 15...

2013 valstybinis
8 uždavinys

Išspręskite nelygybę log0.01 100  <  log0.01 x.

A (-∞ ; 100)        B (0 ; 0.01)        C (0.01 ; 100)      D (0 ; 100)      E (100; +∞)

Sprendimas

log0.01 100...

2014 valstybinis
4 uždavinys

Sprendimas.

$$\frac{1}{a}$$ yra neigiamas, $$\frac{1}{b}$$ teigiamas, bet mažesnis už 1.

Atsakymas: C

...
2016 valstybinis
23 uždavinys

100 metrų plaukimo varžybose dalyvavo Rūta, Julija ir Džesika. Rūta savo finišo momentu lenkė Juliją 2 metrais, o Julija savo finišo momentu lenkė Džesiką 1...

2021 valstybinis
19 uždavinys

Sprendimas:

$$120\cdot 1.05 = 126$$

Atsakymas: 126 Eur

-------------------------------------------------------------------------

Sprendimas:

Trečio...

Pasiruošk egzaminui

Kampo tarp vektorių a ir b didumas 120. Žinoma, kad |a| = 3, |b| = 4. Apskaičiuokite skaliarinę sandaugą $$(3\cdot \vec{a}-2\cdot \vec{b})\cdot (\vec{a}+2\cdot \vec{b})$$.

Sprendimas.

...

2021 valstybinis
22 uždavinys

Sprendimas:

Tikimybė ištraukti mėlyną yra $$\frac{1}{5}$$.

Tikimybė ištraukti žalią arba raudoną lygi $$1-\frac{1}{5} = \frac{4}{5}$$

Tikimybė ištraukti žalią lygi...

2020 valstybinis
20 uždavinys

Sprendimas:

PELNAS = PAJAMOS - IŠLAIDOS.

Sumažinus kainą x eurų, apyrankės pardavimo kaina bus 38 - x.

Apyrankių bus parduota 10 + x.

PAJAMOS...

2021 valstybinis
11 uždavinys

Sprendimas:

Trikampio pagrindas AC = 6

$$S = \frac{a\cdot h}{2} = \frac{AC\cdot BO}{2} = \frac{6\cdot 4}{2} = 12$$

Atsakymas: 12

Sprendimas:

Raskime kūgio sudaromąją BC:

$$BC = \sqrt {BO^{2}+OC^{2}} = \sqrt {4^{2}+3^{2}} = \sqrt {16+9} = \sqrt {25} = 5$$...

2014 PUPP
6 uždavinys

Akcijos metu pradinę dviračio kainą sumažinus 26 %, dviratis kainavo 407 Lt. Kokia pradinė dviračio kaina? 

A 301,18 Lt        B 433 Lt        C 512,82 Lt  ...

2021 valstybinis
14 uždavinys

Sprendimas:

Reikia, kad iškristų 6+6.

Kad vienas kauliukas iškris šešiomis akutėmis, tikimybė yra $$\frac{1}{6}$$.

 $$\frac{1}{6}\cdot \frac{1}{6} = \frac{1}{36}$$.

Atsakymas: ...

2014 valstybinis
21 uždavinys

Sprendimas.

$$v_{a} = 1.25\cdot v_{m}$$

$$v_{a}$$  = $$1.25\cdot v_{m}$$

...
2019 valstybinis
16 uždavinys

Sprendimas:

$$log_{5}(x-3) < log_{5}(2)$$

$$x-3 < 2$$

$$x < 5$$.

Apibrėžimo sritis x - 3 > 0 arba x > 3

Atsakymas: x priklauso (3;5)

...

2021 valstybinio matematikos egzamino sprendimai

2020 valstybinio matematikos egzamino sprendimai

2019 valstybinio matematikos egzamino sprendimai

2018 valstybinio matematikos egzamino sprendimai

2017 valstybinio matematikos egzamino sprendimai

2016 valstybinio matematikos egzamino sprendimai

2015 valstybinio matematikos egzamino sprendimai

2014 valstybinio matematikos egzamino sprendimai

2014 PUPP matematikos egzamino sprendimai

2014 valstybinio bandomojo matematikos egzamino sprendimai

2013 valstybinio matematikos egzamino sprendimai

2017 valstybinis
5 uždavinys

Sprendimas:

10*10*10*10 = 104

Atsakymas: C

...
2014 PUPP
8 uždavinys

Išspręskite nelygybę 5 - 2x <= 13

A (-∞; -9]     B (-∞; -4]       C [-9; +∞)      D [-4; +∞)

Sprendimas.

 

$$5-2\cdot x$$  ≤ $$13$$
...
2020 valstybinis
8 uždavinys

Sprendimas:

Sinusas gali įgyti reikšmes nuo -1 iki 1.

$$sin(2\cdot x)$$ įgyja reikšmes  nuo -1 iki 1.

$$3\cdot sin(2\cdot x)$$ įgyja reikšmes nuo -3 iki 3.

...

  • Matematikos formulės
  • Trumposios daugybos formulės
  • Kvadratinės lygtys
  • Progresijos
  • Trigonometrija
  • Tikimybių teorija
  • Statistika
  • Apskritimas, skritulys
  • Trikampiai
  • Keturkampiai, daugiakampiai
  • Figūrų plotai
  • Erdvinės figūros
  • Geometrinių figūrų lygtys
  • Įvairios
  • Kombinatorika
  • Vektoriai
  • Logaritmai
  • Fizikos formulės
  • Kinematika
  • Dinamika
  • Statika
  • Tvermės dėsniai mechanikoje
  • Skysčių ir dujų slėgis
  • Molekulinė kinetika
  • Šiluminiai reiškiniai
  • Garai, skysčiai, kietoji būsena
  • Termodinamika
  • Elektrostatika
  • Nuolatinė elektros srovė
  • Magnetinis laukas
  • Elektromagnetinė indukcija
  • Elektros srovė metaluose
  • Mechaniniai svyravimai
  • Mechaninės bangos
  • Elektromagnetiniai virpesiai
  • Kintamoji elektros srovė
  • Elektromagnetinės bangos
  • Fotometrija
  • Geometrinė optika
  • Banginė optika
  • Kvantinė optika
  • Reliatyvumo teorija
  • Atomas ir atomo branduolys
Visos teisės saugomos ©