Apskaičiuokite $$\sqrt[6]{14-6\cdot \sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$
Sprendimas.
Lygties 9x+1 =34x-2 sprendinys yra:
A - 1 B 0 C 1 D 2
Sprendimas:
2004 metais miestelyje gyveno 5000 gyventojų. Po penkerių metų gyventojų skaičius miestelyje padidėjo 2 %, o dar po penkerių metų – dar 4 %. Kiek...
Sprendžiame pirmą rodiklinę lygtelę:
$$2^{x} = 3$$. Logaritmuojame abi puses pagrindu 2:
$$log_{2}(2^{x}) = log_{2}(3)$$
$$x = log_{2}(3)$$.
...
Visi dviženkliai skaičiai, kurių skaitmenų suma lygi 5, po vieną užrašomi kortelėse. Tada atsitiktinai ištraukiama viena kortelė. Kokia tikimybė,...
Tuo pačiu metu iš miestelių A ir B pastoviais greičiais vienas priešais kitą išvažiavo du dviratininkai. Pirmasis važiavo iš miestelio A į miestelį B, o...
Kampas ADB lygus kampui ACB, nes abu remiasi į tą patį lanką. Kampas ACB = 60, nes trikampus ABC lygiakraštis.
Atsakymas: 60 laipsnių.
Seifo kodą turi sudaryti trys skirtingi skaitmenys, užrašyti didėjimo tvarka. Kiek tokių skirtingų kodų galima sudaryti?
A 84 B 120 C 504 D...
Kraštinės AB ilgis lygus x.
Kraštinės BC ilgis lygus kx.
Pagal sinusų teoremą
$$\frac{AB}{sin(a)} = \frac{BC}{sin(2\cdot a)}$$
$$\frac{x}{sin(a)} = \frac{k\cdot x}{sin(2\cdot a)}$$
Akcijos metu pradinę dviračio kainą sumažinus 26 %, dviratis kainavo 407 Lt. Kokia pradinė dviračio kaina?
A 301,18 Lt B 433 Lt C 512,82 Lt ...
Viename iš paveikslų pavaizduotas funkcijos $$y = \sqrt {x-1}+1$$ grafikas. Kuriame?
y - šakninė funkcija, pastumta į kairę (x = x - 1)...
Aibės A pirminiai skaičiai yra B = {3; 7; 13}.
Jų suma yra $$3+7+13 = 23$$
Atsakymas: 23
2 + 2 = 4;
4 + 2 = 6;
Atsakymas: D
Trikampio pagrindas AC = 6
$$S = \frac{a\cdot h}{2} = \frac{AC\cdot BO}{2} = \frac{6\cdot 4}{2} = 12$$
Atsakymas: 12
Raskime kūgio sudaromąją BC:
$$BC = \sqrt {BO^{2}+OC^{2}} = \sqrt {4^{2}+3^{2}} = \sqrt {16+9} = \sqrt {25} = 5$$...
Mieste yra kino teatras. Jame yra kelios kino salės, kavinė. Šis teatras yra labai mėgstamas, tad jame apsilanko daugybė žiūrovų.
1. Teatro administracija...
$$a\cdot b+c$$ yra lyginis dviem atvejais:
1) kai $$a\cdot b$$ lyginis ir $$c$$ lyginis
2) kai $$a\cdot b$$ nelyginis ir $$c$$ nelyginis.
Tetraedro siena - lygiakraštis trikampis, kurio kraštinė lygi 6.
Lygiakraščio trikampio plotas lygus...
Kuriame paveiksle pavaizduota didėjančioji funkcija?
Tik viename grafike - B - nėra nei horizontalių, nei vertikalių dalių.
Atsakymas: B
Kūgio pagrindo spindulys r, sudaromoji L = 6.
$$\frac{r}{L} = cos(a)$$
$$r = cos(a)\cdot L = 6\cdot cos(a)$$ (1)
kai $$a = \frac{\pi}{3}$$
$$r = 6\cdot cos(\frac{\pi}{3}) = \frac{1}{2}\cdot 6 = 3$$...
$$\vec{a} = \vec{AD}+\vec{DM} = \vec{AD}+\frac{\vec{DC}}{2} = \vec{AD}+\frac{\vec{AB}}{2}$$
$$\vec{b} = \vec{AB}+\vec{BK} = \vec{AB}+\frac{\vec{BC}}{2} = \vec{AB}+\frac{\vec{AD}}{2}$$
$$\vec{a} = \vec{AD}+\frac{\vec{AB}}{2}$$ (1)
$$\vec{b} = \vec{AB}+\frac{\vec{AD}}{2}$$...
Cukrus sudaro 6 % arbatos gėrimo „iTea“ masės.
1. Rugilė nusipirko 1,5 kg gėrimo „iTea“. Kiek gramų cukraus yra jos nusipirktame gėrime?
1500 g...
Duotas smailusis trikampis ABC. Atkarpos AD ir CE yra trikampio aukštinės. AD = 20, BC = 30, o EB = 18.
1. Apskaičiuokite EC ilgį.
Iš viso mokinių yra $$4+5+10+5+1 = 25$$
Iš viso išleista $$a\cdot b+b\cdot a = 2\cdot a\cdot b$$ eurų.
Iš viso nupirkta $$a+b$$ knygų.
Vidutinė knygos kaina $$\frac{2\cdot a\cdot b}{a+b}$$
Stačiojo gretasienio pagrindas yra rombas, kurio įstrižainių ilgiai 6 cm ir 8 cm. Šio gretasienio aukštinė yra 12 cm ilgio. Apskaičiuokite...
Imties 5; 14; 11; 6; 5; 10; 12 mediana yra:
A 10 B 9 C 6 D 5
Surikiuota imtis yra 5; 5; 6; 10; 11; 12; 14. Narių skaičius nelyginis, todėl...
2021 valstybinio matematikos egzamino sprendimai
2020 valstybinio matematikos egzamino sprendimai
2019 valstybinio matematikos egzamino sprendimai
2018 valstybinio matematikos egzamino sprendimai
2017 valstybinio matematikos egzamino sprendimai
2016 valstybinio matematikos egzamino sprendimai
2015 valstybinio matematikos egzamino sprendimai
2014 valstybinio matematikos egzamino sprendimai
2014 PUPP matematikos egzamino sprendimai
2014 valstybinio bandomojo matematikos egzamino sprendimai
2013 valstybinio matematikos egzamino sprendimai
Raskite didžiausią sveikąjį lygties $$\sqrt {x^{2}-4\cdot x+12} = 3$$ sprendinį.
5 vienodo galingumo ekskavatoriai, dirbdami kartu, gali iškasti duobę per 24 valandas. Tačiau jie pradėjo dirbti vienas po kito vienodais laiko tarpais, o...
$$cos(A)^{2}-1 = (1-sin(A)^{2})-1 = (1-(\frac{1}{4})^{2})-1 = (1-\frac{1}{16})-1 = 1-\frac{1}{16}-1 = -\frac{1}{16}$$
Atsakymas: C $$-\frac{1}{16}$$