• Matematikos egzaminai
    • 2021 valstybinis
    • 2020 valstybinis
    • 2019 valstybinis
    • 2018 valstybinis
    • 2017 valstybinis
    • 2016 valstybinis
    • 2015 valstybinis
    • 2014 valstybinis
    • 2014 PUPP
    • Pasiruošk egzaminui
    • 2014 bandomasis
    • 2013 valstybinis
  • Matematikos formulės
  • Fizikos formulės
  • Įrankiai
2019 valstybinis
3 uždavinys

Sprendimas:

Vietoj x statom 2; vietoj y statom -1:

$$y = -4\cdot x+2\cdot a-7$$

$$-1 = -4\cdot 2+2\cdot a-7$$

$$-1+4\cdot 2+7 = 2\cdot a$$

$$14 = 2\cdot a$$...

2014 PUPP
12 uždavinys

Paveiksle pavaizduotos dvi skritulio, kurio spindulio ilgis lygus 5, išpjovos. Mažesniosios išpjovos kampas yra 72 laipsnių didumo.

1. Parodykite, kad...

2014 valstybinis
3 uždavinys

Sprendimas.

Iš viso mokinių yra 29.

7 val arba mažiau miega 3 + 5 = 8 mokiniai. Tai nesudaro pusės visų mokinių.

8 val arba mažiau miega 3 + 5 + 7 = 15...

2018 valstybinis
22 uždavinys

Piramidės pagrindas yra lygiašonė trapecija, kurios pagrindų ilgiai yra 6 ir 18. Piramidės tūris lygus 14. Į piramidę įbrėžtas kūgis (žr. pav.).

1....

2019 valstybinis
10 uždavinys

Sprendimas:

Keičiame logaritmo pagrindą iš 4 į 2:

$$log_{4}(y) = \frac{log_{2}(y)}{log_{2}(4)} = \frac{log_{2}(y)}{2} = log_{2}(y^{(1/2)}) = log_{2}(\sqrt {y})$$

Atsakymas: D  $$log_{2}(x\cdot \sqrt {y})$$...

2020 valstybinis
12 uždavinys

Sprendimas:

Pagal sinusų teoremą

 $$\frac{2}{sin(30)} = \frac{x}{sin(45)}$$

  $$x = \frac{2\cdot sin(45)}{sin(30)}$$

  $$x = \frac{2\cdot \sqrt {2}}{2\cdot (\frac{1}{2})}$$

  $$x = \frac{\sqrt {2}}{\frac{1}{2}}$$...

2016 valstybinis
22 uždavinys

Martyna pasodino 10 tos pačios rūšies gėlių po vieną į 10 skirtingų spalvų vazonų. Vienas iš vazonų buvo mėlynas. Jos brolis Petras pasisiūlė palaistyti...

Pasiruošk egzaminui

Kiek lygtis $$4\cdot cos(x)+\sqrt {6} = 6$$ turi sprendinių, priklausančių intervalui [-90; 360]?

Sprendimas.

$$4\cdot cos(x)+\sqrt {6}$$  = $$6$$
...

2014 valstybinis
13 uždavinys

Sprendimas.

Greičio funkciją atitinka kelio funkcijos išvestinė.

$$(t^{2}+10\cdot t)'$$  = $$(2\cdot t^{2}+7\cdot t+2)'$$

...
2014 PUPP
11 uždavinys

Suprastinę reiškinį  $$\frac{x^{2}-16}{x+4}$$ gausime

A   $$\frac{1}{x-4}$$       B   $$\frac{1}{x+4}$$      C   $$x-4$$      D  $$x+4$$ 

Sprendimas.

...

2014 valstybinis
12 uždavinys

Sprendimas.

$$e^{(b-2)}-2$$  = $$0$$

...
2021 valstybinis
9 uždavinys

Sprendimas:

Kampas tarp vektorių smailus, kai jų skaliarinė sandauga teigiama:

$$x_{1}\cdot x_{2}+y_{1}\cdot y_{2} > 0$$

$$2\cdot k\cdot (-1)+3\cdot 2 > 0$$

$$-2\cdot k > -6$$

...

2019 valstybinis
8 uždavinys

Sprendimas:

$$3\cdot a = 7\cdot b$$

$$a = \frac{7\cdot b}{3}$$

Vadinasi, a > b

$$2\cdot c = 11\cdot a$$

$$c = 5.5\cdot a$$

Vadinasi, c > a > b

$$5\cdot c = 4\cdot d$$

$$d = \frac{5}{4}\cdot c$$

Vadinasi, d > c > a > b

...

2014 bandomasis
6 uždavinys

Visi  dviženkliai skaičiai,  kurių  skaitmenų  suma  lygi  5,  po  vieną  užrašomi  kortelėse.  Tada atsitiktinai ištraukiama viena kortelė. Kokia tikimybė,...

2020 valstybinis
14 uždavinys

Sprendimas:

Priešingo įvykio tikimybė 1 - 0.75 = 0.25

Atsakymas: 0.25

Sprendimas:

Tikimybė, kad nesuskambės abu telefonai yra [f](1-0.8)(1-0.75) =  0.2*...

2013 valstybinis
8 uždavinys

Išspręskite nelygybę log0.01 100  <  log0.01 x.

A (-∞ ; 100)        B (0 ; 0.01)        C (0.01 ; 100)      D (0 ; 100)      E (100; +∞)

Sprendimas

log0.01 100...

2013 valstybinis
13 uždavinys

f(x) =$$\sqrt {2}\cdot x^{2}+\sqrt {2}$$. Apskaičiuokite f'(√2)

Sprendimas.

$$(\sqrt {2}\cdot x^{2}+\sqrt {2})'$$ $$$$

...
2017 valstybinis
7 uždavinys

Sprendimas:

Atsakymas: B

...
2014 valstybinis
11 uždavinys

Sprendimas.

$$sin(2\cdot x+5)'$$ $$$$

...
2021 valstybinis
14 uždavinys

Sprendimas:

Reikia, kad iškristų 6+6.

Kad vienas kauliukas iškris šešiomis akutėmis, tikimybė yra $$\frac{1}{6}$$.

 $$\frac{1}{6}\cdot \frac{1}{6} = \frac{1}{36}$$.

Atsakymas: ...

2020 valstybinis
5 uždavinys

Sprendimas:

Trikampis AOB lygiakraštis (OA = OB = AB), todėl kampas ∠BAC = 60°

Atsakymas: C

...
2014 valstybinis
30 uždavinys

Sprendimas.

Yra 6 nelyginiai ir 5 lyginiai rutuliukai.

Šešių rutuliukų suma nelyginė gali būti šiais atvejais:

Vienas nelyginis, 5 lyginiai (1)

3...

2016 valstybinis
2 uždavinys

Lėktuvas skrenda, pučiant pastovaus greičio vėjui. Naudodamas tiek pat galios, pavėjui jis gali skristi 650 km/h greičiu, o prieš vėją gali skristi 600 km/h...

2013 valstybinis
21 uždavinys

Apskaičiuokite $$\sqrt[6]{4-2\cdot \sqrt {3}}\cdot \sqrt[3]{1+\sqrt {3}}\cdot \sqrt[3]{4}$$

Sprendimas:

$$\sqrt[6]{4-2\cdot \sqrt {3}}\cdot \sqrt[3]{1+\sqrt {3}}\cdot \sqrt[3]{4}$$ $$$$

...
2018 valstybinis
19 uždavinys

Duota n skirtingų natūraliųjų skaičių, sudarančių didėjančią aritmetinę progresiją. Skaičius n yra ne mažesnis už 3.

1. Ar šių skaičių suma gali būti lygi...

2014 bandomasis
9 uždavinys

40 berniukų amžiaus vidurkis yra 11 metų, 20 mergaičių – 14 metų. Koks visų šių 60 vaikų amžiaus vidurkis?

A  11  B  12  C  13  D  14

Sprendimas.

Bendras...

2015 valstybinis
6 uždavinys

Išspręskite lygtį (x + 2011)(x + 2013)(x + 2014) = (x + 2013)(x + 2014)(x + 2015).

A - 2011; - 2013; - 2014; - 2015

B  - 2011; - 2015

C  - 2013;  - 2014

D sprendinių nėra

...

2021 valstybinio matematikos egzamino sprendimai

2020 valstybinio matematikos egzamino sprendimai

2019 valstybinio matematikos egzamino sprendimai

2018 valstybinio matematikos egzamino sprendimai

2017 valstybinio matematikos egzamino sprendimai

2016 valstybinio matematikos egzamino sprendimai

2015 valstybinio matematikos egzamino sprendimai

2014 valstybinio matematikos egzamino sprendimai

2014 PUPP matematikos egzamino sprendimai

2014 valstybinio bandomojo matematikos egzamino sprendimai

2013 valstybinio matematikos egzamino sprendimai

2014 PUPP
15 uždavinys

Mieste yra kino teatras. Jame yra kelios kino salės, kavinė. Šis teatras yra labai mėgstamas, tad jame apsilanko daugybė žiūrovų. 

1. Teatro administracija...

2021 valstybinis
23 uždavinys

Sprendimas:

Tetraedro siena - lygiakraštis trikampis, kurio kraštinė lygi 6.

Lygiakraščio trikampio plotas lygus...

2019 valstybinis
11 uždavinys

Sprendimas:

Viso darbuotojų $$20+17+12+8+3 = 60$$

$$\frac{1000\cdot 20+1200\cdot 17+1500\cdot 12+2000\cdot 8+2500\cdot 3}{60} = $$

 $$\frac{20000+20400+18000+16000+7500}{60} = $$...

  • Matematikos formulės
  • Trumposios daugybos formulės
  • Kvadratinės lygtys
  • Progresijos
  • Trigonometrija
  • Tikimybių teorija
  • Statistika
  • Apskritimas, skritulys
  • Trikampiai
  • Keturkampiai, daugiakampiai
  • Figūrų plotai
  • Erdvinės figūros
  • Geometrinių figūrų lygtys
  • Įvairios
  • Kombinatorika
  • Vektoriai
  • Logaritmai
  • Fizikos formulės
  • Kinematika
  • Dinamika
  • Statika
  • Tvermės dėsniai mechanikoje
  • Skysčių ir dujų slėgis
  • Molekulinė kinetika
  • Šiluminiai reiškiniai
  • Garai, skysčiai, kietoji būsena
  • Termodinamika
  • Elektrostatika
  • Nuolatinė elektros srovė
  • Magnetinis laukas
  • Elektromagnetinė indukcija
  • Elektros srovė metaluose
  • Mechaniniai svyravimai
  • Mechaninės bangos
  • Elektromagnetiniai virpesiai
  • Kintamoji elektros srovė
  • Elektromagnetinės bangos
  • Fotometrija
  • Geometrinė optika
  • Banginė optika
  • Kvantinė optika
  • Reliatyvumo teorija
  • Atomas ir atomo branduolys
Visos teisės saugomos ©