Taisyklingosios keturkampės piramidės, kurios visos briaunos lygios, tūris lygus $$972\cdot \sqrt {2}$$ cm3. Plokštuma, lygiagreti piramidės pagrindui ABCD,...
Lygties 9x+1 =34x-2 sprendinys yra:
A - 1 B 0 C 1 D 2
Sprendimas:
Tiesės m koeficientas k = - 2, nes ji lygiagreti tiesei y = - 2x + 1. Kol kas tinka variantai B ir D.
Įstatykime x = - 2 į B lygtį:
...
Ritinio pagrindo apskritimo ilgis lygus 30, o ritinio aukštinės ilgis lygus 6. Apskaičiuokite šio ritinio šoninio paviršiaus plotą.
Ritinio...
$$\frac{1}{t} = \frac{1}{t_{1}}+\frac{1}{t_{2}}$$
$$\frac{1}{t} = \frac{1}{9}+\frac{1}{18}$$
$$\frac{1}{t} = \frac{2}{18}+\frac{1}{18}$$
$$\frac{1}{t} = \frac{3}{18}$$
$$\frac{1}{t} = \frac{1}{6}$$
$$t = 6$$
Atsakymas: Per 6...
Kuris iš pateiktų eskizų yra funkcijos y = 2x grafiko eskizas?
A grafikas tiesės, B grafikas parabolės, D grafikas kubinės funkcijos, C...
Raskite vektoriaus $$\vec{c}$$ ilgį, jei $$\vec{c} = 2\cdot \vec{a}-3\cdot \vec{b}$$ ir $$\vec{a} = (0;\ \ \ \ 0.5)$$, $$\vec{b} = (-2;\ \ \ \ 3)$$
Sprendimas.
Išrinksime 3 dainuojančius iš 6:
$$\frac{6\cdot 5\cdot 4}{1\cdot 2\cdot 3} = 20$$
Išrinksime 2 grojančius iš 4:
$$\frac{4\cdot 3}{1\cdot 2} = 6$$
Sudauginame 20 ir 6
$$20\cdot 6 = 120$$
Vietoj x statome $$X_{A}$$, vietoj y statome -1:
$$log_{2}(X_{A}) = -1$$
$$X_{A} = 2^{(-1)}$$
$$X_{A} = \frac{1}{2}$$
Kubo kraštinė a.
$$3\cdot a^{2} = 21$$ (įstrižainės kvadratas)
Piramidės pagrindas yra lygiašonė trapecija, kurios pagrindų ilgiai yra 6 ir 18. Piramidės tūris lygus 14. Į piramidę įbrėžtas kūgis (žr. pav.).
1....
Mieste yra kino teatras. Jame yra kelios kino salės, kavinė. Šis teatras yra labai mėgstamas, tad jame apsilanko daugybė žiūrovų.
1. Teatro administracija...
Pirmas, antras ir trečias skaičiai sudaro aritmetinę progresiją, todėl
pirmas skaičius lygus x, antras x + d, trečias x + 2d
x + (x + d) + (x...
$$log_{2}(9-x^{2}) = 3$$
$$log_{2}(9-x^{2}) = log_{2}(2^{3})$$
$$9-x^{2} = 2^{3}$$
$$-x^{2} = 8-9$$
$$-x^{2} = -1$$
$$x^{2} = 1$$
$$x = -1$$ ir $$x = 1$$
10*10*10*10 = 104
Atsakymas: C
Išspręskite lygčių sistemą
$$x^{2}+x\cdot y = 10$$
$$y^{2}+x\cdot y = 6$$
Išskaidome dauginamaisiais lygčių kairiasias puses:
$$x\cdot (x+y) = 10$$
1. Pirmoje kino salėje yra 24 eilės po 25 kėdes kiekvienoje eilėje. Kiek kėdžių yra pirmoje salėje?
24 * 25 = 600
Atsakymas: 600
2. Antroje...
Pirmu vamzdžiu baseiną vandeniu galima pripildyti per 40 min, o antru – per 1 val.
Per kiek laiko bus pripildytas baseinas, jei vanduo bėgs abiem...
Paveiksle pavaizduota parabolė yra funkcijos y = f (x) grafikas. Šios funkcijos reikšmių sritis yra:
A (-∞ ; +∞ )
B (-∞ ; 3)
C (-∞ ; 2) ...
Kvadrato ABCD kraštinės ilgis lygus 5. Kraštinėje BA taip pažymėtas taškas L, kad BL = 3, kraštinėje BC taškai M ir K taip pažymėti, kad BK = 4, CM = 3 ir...
Apibrėžimo sritis x priklauso (-∞; 4) U (4; +∞), todėl funkcija neapibrėžta taške x = 4. Vietoj x statysim 4.
Funkcija būna neapibrėžta, kai...
Tikimybė, kad suges pirmoji, yra 0.1, kad suges antroji, tikimybė 0,03.
Kad suges abi, tikimybė yra 0.1 * 0. 03 = 0.003.
Tikimybė, kad nesuges...
Raskite didžiausią funkcijos f(x) = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ reikšmę intervale [0; $$\frac{\pi}{2}$$]
Randame funkcijos f(x) išvestinę.
$$D = b^{2}-4\cdot a\cdot c = 1-(-24)$$ = 25.
x1 = $$\frac{-1+\sqrt {25}}{2\cdot -1} = \frac{-1+5}{-2} = \frac{4}{-2}$$ = $$-2$$
x2 =...
Į 5 litrų talpos indą įpilta 2 litrai 15 % druskos tirpalo. Kiek litrų 20 % druskos tirpalo reikia
įpilti į šį indą, kad druskos kiekis procentais gautame...
Kiek yra triženklių natūraliųjų skaičių, kurių visi trys skaitmenys skirtingi?
A $$9\cdot 8\cdot 7$$ B $$10\cdot 9\cdot 8$$ C $$9\cdot 9\cdot 9$$ D...
Kai narių skaičius lyginis, mediana lygi dviejų vidurinių narių vidurkiui:
2021 valstybinio matematikos egzamino sprendimai
2020 valstybinio matematikos egzamino sprendimai
2019 valstybinio matematikos egzamino sprendimai
2018 valstybinio matematikos egzamino sprendimai
2017 valstybinio matematikos egzamino sprendimai
2016 valstybinio matematikos egzamino sprendimai
2015 valstybinio matematikos egzamino sprendimai
2014 valstybinio matematikos egzamino sprendimai
2014 PUPP matematikos egzamino sprendimai
2014 valstybinio bandomojo matematikos egzamino sprendimai
2013 valstybinio matematikos egzamino sprendimai
vardiklis q = $$\frac{b_{2}}{b_{1}} = \frac{6}{2} = 3$$
$$b_{4} = b_{2}\cdot 3\cdot 3 = 6\cdot 3\cdot 3 = 54$$
Atsakymas: 54
v - vaikinai, m - merginos.
Vaikinų 3 kartus daugiau, todėl
$$v = 3\cdot m$$.
Merginų m,
vaikinų 3m,
Iš viso studentų 4m.
Renkant pirmą studentą...
Keičiame pirmojo logaritmo pagrindą iš a į 2:
$$log_{a}(8) = \frac{log_{2}(8)}{log_{2}(a)} = \frac{3}{log_{2}(a)}$$
Sudauginus su antruoju logaritmu, gauname