• Matematikos egzaminai
    • 2021 valstybinis
    • 2020 valstybinis
    • 2019 valstybinis
    • 2018 valstybinis
    • 2017 valstybinis
    • 2016 valstybinis
    • 2015 valstybinis
    • 2014 valstybinis
    • 2014 PUPP
    • Pasiruošk egzaminui
    • 2014 bandomasis
    • 2013 valstybinis
  • Matematikos formulės
  • Fizikos formulės
  • Įrankiai
2013 valstybinis
30 uždavinys

Įbrėžtinio keturkampio  ABCD kraštinių  AB ir AD ilgių sandauga lygi kraštinių CB ir CD ilgių sandaugai. Trikampio ABD plotas lygus 20.

Apskaičiuokite...

2017 valstybinis
22 uždavinys

Sprendimas:

$$-0.1\cdot x^{2}+22.5$$  = $$0$$
...

2013 valstybinis
14 uždavinys

Sausio 1 dieną pradėtame eksploatuoti smėlio karjere buvo 80 000 m3 smėlio. Kasmet 

planuojama iškasti 20 % praėjusių metų gale karjere likusio smėlio. Kiek...

2021 valstybinis
8 uždavinys

Sprendimas:

Išrinksime 3 dainuojančius iš 6:

$$\frac{6\cdot 5\cdot 4}{1\cdot 2\cdot 3} = 20$$

Išrinksime 2 grojančius iš 4:

$$\frac{4\cdot 3}{1\cdot 2} = 6$$

Sudauginame 20 ir 6

$$20\cdot 6 = 120$$

...

2014 valstybinis
6 uždavinys

Sprendimas.

Tikimybė, kad suges pirmoji, yra 0.1, kad suges antroji, tikimybė 0,03.

Kad suges abi, tikimybė yra 0.1 * 0. 03 = 0.003.

Tikimybė, kad nesuges...

2014 bandomasis
18 uždavinys

Vienetinis  apskritimas,  kurio  centras  yra  koordinačių  pradžios  taškas, kerta Ox ašį taške B. Apskritime pažymėtas taškas A taip, kad ∠AOB = 60 (žr....

2017 valstybinis
7 uždavinys

Sprendimas:

Atsakymas: B

...
2014 PUPP
2 uždavinys

Ištraukite šaknį: $$\sqrt {12\cdot 27}$$

Sprendimas.

 

$$\sqrt {12\cdot 27}$$ $$$$

...
2014 PUPP
14 uždavinys

Kvadrato ABCD kraštinės ilgis lygus 5. Kraštinėje BA taip pažymėtas taškas L, kad BL = 3, kraštinėje BC taškai M ir K taip pažymėti, kad BK = 4, CM = 3 ir...

2015 valstybinis
24 uždavinys

Taisyklingosios keturkampės piramidės, kurios visos briaunos lygios, tūris lygus $$972\cdot \sqrt {2}$$ cm3. Plokštuma, lygiagreti piramidės pagrindui ABCD,...

2015 valstybinis
19 uždavinys

Raskite lygties 2 sin x = - 1 sprendinius, priklausančius intervalui [-180°; 360°].

Sprendimas:

$$2\cdot sin(x)$$  = $$-1$$
...

2013 valstybinis
1 uždavinys

Kurios iš žemiau užrašytų funkcijų grafiko eskizas pavaizduotas paveiksle? 

A $$y = \sqrt {x}$$        B $$y = log_{2}(x)$$           C  $$y = 2^{x}$$...

2017 valstybinis
23 uždavinys

Sprendimas:

$$\vec{a} = \vec{b}+\vec{BD}$$

$$\vec{BD} = \vec{a}-\vec{b}$$

Kadangi $$\vec{BF}$$ lygus trečdaliui vektoriaus $$\vec{BD}$$

$$\vec{BF} = \frac{\vec{BD}}{3} = \frac{\vec{a}-\vec{b}}{3}$$  (1)

...

2016 valstybinis
23 uždavinys

100 metrų plaukimo varžybose dalyvavo Rūta, Julija ir Džesika. Rūta savo finišo momentu lenkė Juliją 2 metrais, o Julija savo finišo momentu lenkė Džesiką 1...

2019 valstybinis
8 uždavinys

Sprendimas:

$$3\cdot a = 7\cdot b$$

$$a = \frac{7\cdot b}{3}$$

Vadinasi, a > b

$$2\cdot c = 11\cdot a$$

$$c = 5.5\cdot a$$

Vadinasi, c > a > b

$$5\cdot c = 4\cdot d$$

$$d = \frac{5}{4}\cdot c$$

Vadinasi, d > c > a > b

...

2014 bandomasis
28 uždavinys

Raskite didžiausią funkcijos f(x) = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ reikšmę intervale [0; $$\frac{\pi}{2}$$]

Sprendimas.

Randame funkcijos f(x) išvestinę.

...

2014 bandomasis
13 uždavinys

Apskaičiuokite funkcijos $$(x-3)^{2}-6\cdot x^{2}$$ išvestinę.

Sprendimas.

$$((x-3)^{2}-6\cdot x^{2})'$$ $$$$

...
2018 valstybinis
21 uždavinys

Duota funkcija f(x) = $$\frac{x^{2}\cdot log_{2}(x)-log_{2}(x)}{x-1}$$

1. Apskaičiuokite f(2).

Sprendimas:

$$\frac{x^{2}\cdot log_{2}(x)-log_{2}(x)}{x-1}$$ $$$$
...

2017 valstybinis
24 uždavinys

Sprendimas:

Kūgio pagrindo spindulys r, sudaromoji L = 6.

$$\frac{r}{L} = cos(a)$$

$$r = cos(a)\cdot L = 6\cdot cos(a)$$ (1)

kai $$a = \frac{\pi}{3}$$

$$r = 6\cdot cos(\frac{\pi}{3}) = \frac{1}{2}\cdot 6 = 3$$...

2019 valstybinis
20 uždavinys

Sprendimas:

$$5\cdot sin(30)-cos(2\cdot 30)+1 = 5\cdot sin(30)-cos(60)+1 = \frac{5\cdot 1}{2}-\frac{1}{2}+1 = \frac{5}{2}+\frac{1}{2} = 3$$

Atsakymas: 3

...

Pasiruošk egzaminui

Per dvejus metus miestelio gyventojų skaičius padidėjo 44%. Keliais procentais padidėdavo miestelio gyventojų skaičius kiekvienais metais, jei šis procentas...

2015 valstybinis
10 uždavinys

Žinoma, kad funkcija f (x) yra lyginė, o g(x) – nelyginė. Jei f (a) = - b, g( - b) = a, kur a ≠ 0, b ≠ 0, tai g( f (- a)) + f (g(b)) lygu:

A a + b        B...

2018 valstybinis
1 uždavinys

Viename iš paveikslų pavaizduotas funkcijos $$y = \sqrt {x-1}+1$$ grafikas. Kuriame?

Sprendimas:

y - šakninė funkcija, pastumta į kairę (x = x - 1)...

2021 valstybinis
7 uždavinys

Sprendimas:

Tiesės m koeficientas k = - 2, nes ji lygiagreti tiesei y = - 2x + 1. Kol kas tinka variantai B ir D.

Įstatykime x = - 2 į B lygtį: 

...

2016 valstybinis
19 uždavinys

Duota funkcija f (x) = 4log4(2 + x) + log2(1 - x).

1. Nustatykite f (x) apibrėžimo sritį.

Sprendimas:

Logaritmuojami reiškiniai turi būti teigiami:

2 + x >...

2021 valstybinis
4 uždavinys

Sprendimas:

Panašūs trikampiai

$$\frac{1}{1.25} = \frac{x}{2}$$.

$$x = \frac{1\cdot 2}{1.25} = 1.6$$.

Atsakymas: A

...
2019 valstybinis
16 uždavinys

Sprendimas:

$$log_{5}(x-3) < log_{5}(2)$$

$$x-3 < 2$$

$$x < 5$$.

Apibrėžimo sritis x - 3 > 0 arba x > 3

Atsakymas: x priklauso (3;5)

...

2021 valstybinio matematikos egzamino sprendimai

2020 valstybinio matematikos egzamino sprendimai

2019 valstybinio matematikos egzamino sprendimai

2018 valstybinio matematikos egzamino sprendimai

2017 valstybinio matematikos egzamino sprendimai

2016 valstybinio matematikos egzamino sprendimai

2015 valstybinio matematikos egzamino sprendimai

2014 valstybinio matematikos egzamino sprendimai

2014 PUPP matematikos egzamino sprendimai

2014 valstybinio bandomojo matematikos egzamino sprendimai

2013 valstybinio matematikos egzamino sprendimai

2018 valstybinis
12 uždavinys

Taškas O yra apie trikampį ABC apibrėžto apskritimo centras. Apskritimo spindulio ilgis lygus 6, ∠BCA = 30°, o ∠CAB = 60°.

1. Apskaičiuokite AB ilgį. 

2....

2016 valstybinis
2 uždavinys

Lėktuvas skrenda, pučiant pastovaus greičio vėjui. Naudodamas tiek pat galios, pavėjui jis gali skristi 650 km/h greičiu, o prieš vėją gali skristi 600 km/h...

2021 valstybinis
18 uždavinys

Sprendimas:

Į lygtį g(x) = f(x) + 2 įstatykime x = 1:

g(1) = f(1) + 2. Yra žinoma, kad  g(1) = $$\sqrt {3}$$, taigi

$$\sqrt {3}$$ = f(1) + 2

f(1)...

  • Matematikos formulės
  • Trumposios daugybos formulės
  • Kvadratinės lygtys
  • Progresijos
  • Trigonometrija
  • Tikimybių teorija
  • Statistika
  • Apskritimas, skritulys
  • Trikampiai
  • Keturkampiai, daugiakampiai
  • Figūrų plotai
  • Erdvinės figūros
  • Geometrinių figūrų lygtys
  • Įvairios
  • Kombinatorika
  • Vektoriai
  • Logaritmai
  • Fizikos formulės
  • Kinematika
  • Dinamika
  • Statika
  • Tvermės dėsniai mechanikoje
  • Skysčių ir dujų slėgis
  • Molekulinė kinetika
  • Šiluminiai reiškiniai
  • Garai, skysčiai, kietoji būsena
  • Termodinamika
  • Elektrostatika
  • Nuolatinė elektros srovė
  • Magnetinis laukas
  • Elektromagnetinė indukcija
  • Elektros srovė metaluose
  • Mechaniniai svyravimai
  • Mechaninės bangos
  • Elektromagnetiniai virpesiai
  • Kintamoji elektros srovė
  • Elektromagnetinės bangos
  • Fotometrija
  • Geometrinė optika
  • Banginė optika
  • Kvantinė optika
  • Reliatyvumo teorija
  • Atomas ir atomo branduolys
Visos teisės saugomos ©