19 uždavinys21 uždavinys
Duotas reiškinys log0,2(2x + 3) + log0,2(4x - 5).
1. Parodykite, kad šio reiškinio apibrėžimo sritis yra intervalas (1,25; + ∞).
Sprendimas:
Logaritmuojami reiškiniai turi būti teigiami:
2x + 3 > 0
4x - 5 > 0
2* x+3 >
0
2* x+3 > 0$$2\cdot x+3$$ > $$0$$
2* x > 0-3$$2\cdot x$$ > $$0-3$$
2* x > -3$$2\cdot x$$ > $$-3$$
x > - $$x$$ > $$-\frac{3}{2}$$ x > -1.5$$x$$ > $$-1.5$$
4* x-5 >
0
4* x-5 > 0$$4\cdot x-5$$ > $$0$$
4* x > 5+0$$4\cdot x$$ > $$5+0$$
4* x > 5$$4\cdot x$$ > $$5$$
x > $$x$$ > $$\frac{5}{4}$$ x > 1.25$$x$$ > $$1.25$$
Sankirta:
2. Išspręskite nelygybę log0,2(2x + 3) + log0,2(4x - 5) ≥ log0,213.
Sprendimas:
log(0.2, 2* x+3)+log(0.2, 4* x-5) ≥
log(0.2,13)
log(0.2, 2* x+3)+log(0.2, 4* x-5) ≥ log(0.2,13)$$log_{0.2}(2\cdot x+3)+log_{0.2}(4\cdot x-5)$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 2* x* 4* x- 2* x* 5+ 3* 4* x- 3* 5)) ≥ log(0.2,13)$$log_{0.2}((2\cdot x\cdot 4\cdot x-2\cdot x\cdot 5+3\cdot 4\cdot x-3\cdot 5))$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 8* x^2- 2* x* 5+ 3* 4* x- 3* 5)) ≥ log(0.2,13)$$log_{0.2}((8\cdot x^{2}-2\cdot x\cdot 5+3\cdot 4\cdot x-3\cdot 5))$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 8* x^2- 10* x+ 3* 4* x- 3* 5)) ≥ log(0.2,13)$$log_{0.2}((8\cdot x^{2}-10\cdot x+3\cdot 4\cdot x-3\cdot 5))$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 8* x^2- 10* x+ 12* x- 3* 5)) ≥ log(0.2,13)$$log_{0.2}((8\cdot x^{2}-10\cdot x+12\cdot x-3\cdot 5))$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 8* x^2- 10* x+ 12* x-15)) ≥ log(0.2,13)$$log_{0.2}((8\cdot x^{2}-10\cdot x+12\cdot x-15))$$ ≥ $$log_{0.2}(13)$$
log(0.2,( 8* x^2+ 2* x-15)) ≥ log(0.2,13)$$log_{0.2}((8\cdot x^{2}+2\cdot x-15))$$ ≥ $$log_{0.2}(13)$$
8* x^2+ 2* x-15 ≤ 13$$8\cdot x^{2}+2\cdot x-15$$ ≤ $$13$$
8* x^2+ 2* x-15-13 ≤ 0$$8\cdot x^{2}+2\cdot x-15-13$$ ≤ $$0$$
8* x^2+ 2* x-28 ≤ 0$$8\cdot x^{2}+2\cdot x-28$$ ≤ $$0$$
( 4* x^2+x-14) ≤ 0$$(4\cdot x^{2}+x-14)$$ ≤ $$0$$
4* x^2+x-14 ≤ 0$$4\cdot x^{2}+x-14$$ ≤ $$0$$
4* x^2+x-14 ≤
0
4* x^2+x-14 ≤ 0$$4\cdot x^{2}+x-14$$ ≤ $$0$$
Parabolė $$4\cdot x^{2}+x-14$$ kertą x ašį taškuose x = -2 ir x = $$\frac{7}{4} = 1.75$$.
Nelygybės $$4\cdot x^{2}+x-14$$ ≤ 0 sprendiniai yra intervalas [-2; 1,75]
Pirmoje dalyje nustatyta apibrėžimo sritis yra intervalas (1,25; + ∞)
Sankirta:
Atsakymas: x priklauso (1.25; 1,75]
19 uždavinys21 uždavinys