19 uždavinys

18 uždavinys20 uždavinys

Sprendimas.

 2^(5-x^2)  ≤ 
16
 2^(5-x^2) ≤ 162(5x2)2^{(5-x^2)} ≤ 1616
log(2, 2^(5-x^2)) ≤ log(2,16)log2(2(5x2))log_{2}(2^{(5-x^2)}) ≤ log2(16)log_{2}(16)
log2(16){\normalsize log_{2}(16)} = 4{\normalsize 4}
log(2, 2^(5-x^2)) ≤ 4log2(2(5x2))log_{2}(2^{(5-x^2)}) ≤ 44
(5- x^2) ≤ 4(5x2)(5-x^{2}) ≤ 44
(5x2){\normalsize (5-x^{2})} = 5x2{\normalsize 5-x^{2}}
5- x^2 ≤ 45x25-x^{2} ≤ 44
5 ≤ 4+ x^255 ≤ 4+x24+x^{2}
5-4 ≤  x^2545-4 ≤ x2x^{2}
54{\normalsize 5-4} = 1{\normalsize 1}
1 ≤  x^211 ≤ x2x^{2}
 x^2 ≥ 1x2x^{2} ≥ 11
2(5x2)2^{(5-x^2)}  ≤ 1616
log2(2(5x2))log_{2}(2^{(5-x^2)})  ≤ log2(16)log_{2}(16)
log2(2(5x2))log_{2}(2^{(5-x^2)})  ≤ 44
5x25-x^{2}  ≤ 44
545-4  ≤ x2x^{2}
11  ≤ x2x^{2}
x2x^{2}  ≥ 11

x priklauso [-∞; -1] U [ 1; +∞]

Atsakymas: x priklauso [-∞; -1] U [ 1; +∞]

18 uždavinys20 uždavinys