28 uždavinys

27 uždavinys29 uždavinys

Raskite didžiausią funkcijos f(x) = 12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)+sin(x) reikšmę intervale [0; π2\frac{\pi}{2}]

Sprendimas.

Randame funkcijos f(x) išvestinę.

 ( 
 1
/ 2
* cos( 2* x)
+sin(x)
)
  = 
 ( 
 1
/ 2
* cos( 2* x)
+sin(x)
)
 = (12cos(2x)+sin(x))(\frac{1}{2}\cdot cos(2\cdot x)+sin(x))' = 
(12cos(2x)+sin(x)){\normalsize (\frac{1}{2}\cdot cos(2\cdot x)+sin(x))'} = (12cos(2x))+sin(x){\normalsize (\frac{1}{2}\cdot cos(2\cdot x))'+sin(x)'}
Paaiškinimas:
Sumos išvestinė (f+g)′ = f′ + g′
 ( 
 1
/ 2
* cos( 2* x)
)
+ sin(x)
 = (12cos(2x))+sin(x)(\frac{1}{2}\cdot cos(2\cdot x))'+sin(x)' = 
12cos(2x){\normalsize \frac{1}{2}\cdot cos(2\cdot x)} = 12cos(2x){\normalsize \frac{1}{2}\cdot cos(2\cdot x)'}
Paaiškinimas:
1/2 iškeltas prieš skliaustus
 
 1
/ 2
* cos( 2* x)
+ sin(x)
 = 12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)'+sin(x)' = 
cos(2x){\normalsize cos(2\cdot x)'} = sin(2x)(2x){\normalsize sin(2\cdot x)\cdot (2\cdot x)'}
Paaiškinimas:
cos(x) išvestinė yra sin(x)
Kompozicijos g(f(x)) išvestinė yra g(y)*f(x) f(x) = (2*x)′
- 
 1
/ 2
* sin( 2* x)* ( 2* x)
+ sin(x)
 = 12sin(2x)(2x)+sin(x)-\frac{1}{2}\cdot sin(2\cdot x)\cdot (2\cdot x)'+sin(x)' = 
(2x){\normalsize (2\cdot x)'} = 2{\normalsize 2}
Paaiškinimas:
x išvestinė yra 1
- 
 1
/ 2
* sin( 2* x)* 2
+ sin(x)
 = 12sin(2x)2+sin(x)-\frac{1}{2}\cdot sin(2\cdot x)\cdot 2+sin(x)' = 
12sin(2x)2{\normalsize \frac{1}{2}\cdot sin(2\cdot x)\cdot 2} = sin(2x){\normalsize sin(2\cdot x)}
-sin( 2* x)+ sin(x) = sin(2x)+sin(x)-sin(2\cdot x)+sin(x)' = 
sin(x){\normalsize sin(x)'} = cos(x){\normalsize cos(x)}
Paaiškinimas:
sin(x) išvestinė yra cos(x)
-sin( 2* x)+cos(x) = sin(2x)+cos(x)-sin(2\cdot x)+cos(x) = 
sin(2x){\normalsize sin(2\cdot x)} = (2sin(x)cos(x)){\normalsize (2\cdot sin(x)\cdot cos(x))}
Paaiškinimas:
Sinuso argumento žeminimo formulė sin(2a)=2sin(a)cos(a){\normalsize sin(2\cdot a) = 2\cdot sin(a)\cdot cos(a)}
-( 2* sin(x)* cos(x))+cos(x) = (2sin(x)cos(x))+cos(x)-(2\cdot sin(x)\cdot cos(x))+cos(x) = 
(2sin(x)cos(x)){\normalsize -(2\cdot sin(x)\cdot cos(x))} = 2sin(x)cos(x){\normalsize -2\cdot sin(x)\cdot cos(x)}
- 2* sin(x)* cos(x)+cos(x) = 2sin(x)cos(x)+cos(x)-2\cdot sin(x)\cdot cos(x)+cos(x) = 
2sin(x)cos(x)+cos(x){\normalsize -2\cdot sin(x)\cdot cos(x)+cos(x)} = cos(x)(2sin(x)1){\normalsize -cos(x)\cdot (2\cdot sin(x)-1)}
Paaiškinimas:
cos(x) iškeltas prieš skliaustus
- cos(x)* ( 2* sin(x)-1)cos(x)(2sin(x)1)-cos(x)\cdot (2\cdot sin(x)-1)
(12cos(2x)+sin(x))(\frac{1}{2}\cdot cos(2\cdot x)+sin(x))'  = 
12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)'+sin(x)'  = 
12sin(2x)(2x)+sin(x)-\frac{1}{2}\cdot sin(2\cdot x)\cdot (2\cdot x)'+sin(x)'  = 
12sin(2x)2+sin(x)-\frac{1}{2}\cdot sin(2\cdot x)\cdot 2+sin(x)'  = 
sin(2x)+sin(x)-sin(2\cdot x)+sin(x)'  = 
sin(2x)+cos(x)-sin(2\cdot x)+cos(x)  = 
(2sin(x)cos(x))+cos(x)-(2\cdot sin(x)\cdot cos(x))+cos(x)  = 
cos(x)(2sin(x)1)-cos(x)\cdot (2\cdot sin(x)-1)

Norint rasti ekstremumus (didžiausias/mažiausias reikšmes), išvestinę cos(x)(2sin(x)1)-cos(x)\cdot (2\cdot sin(x)-1) reikia prilyginti nuliui.

Gauname cos(x)=0cos(x) = 0 (1)

ir 2sin(x)1=02\cdot sin(x)-1 = 0 (2)

Iš (1) lygties gauname x = π2\frac{\pi}{2}

Iš (2) lygties gauname sin(x)=12sin(x) = \frac{1}{2},

x = π6\frac{\pi}{6}

Apskaičiuojame funkcijos f(x) reikšmes rastuose ektremumo taškuose x = π2\frac{\pi}{2} ir x = π6\frac{\pi}{6} bei pradiniame intervalo taške x = 0.

Kai x = 0:

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = 12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)+sin(x) = 
Paaiškinimas:
Keitimas x{\normalsize x} = 00.
 
 1
/ 2
* cos( 2* 0)
+sin(0)
 = 12cos(20)+sin(0)\frac{1}{2}\cdot cos(2\cdot 0)+sin(0) = 
20{\normalsize 2\cdot 0} = 00
 
 1
/ 2
* cos(0)
+sin(0)
 = 12cos(0)+sin(0)\frac{1}{2}\cdot cos(0)+sin(0) = 
sin(0){\normalsize sin(0)} = 00
 
 1
/ 2
* cos(0)
+0
 = 12cos(0)+0\frac{1}{2}\cdot cos(0)+0 = 
 
 1
/ 2
* cos(0)
 = 12cos(0)\frac{1}{2}\cdot cos(0) = 
cos(0){\normalsize cos(0)} = 1{\normalsize 1}
 
 1
/ 2
* 1
 = 121\frac{1}{2}\cdot 1 = 
121{\normalsize \frac{1}{2}\cdot 1} = 12{\normalsize \frac{1}{2}}
 
 1
/ 2
12\frac{1}{2}
12cos(20)+sin(0)\frac{1}{2}\cdot cos(2\cdot 0)+sin(0)  = 
12cos(0)\frac{1}{2}\cdot cos(0)  = 
121\frac{1}{2}\cdot 1  = 
12\frac{1}{2}

Kai x = π2\frac{\pi}{2}

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = 12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)+sin(x) = 
Paaiškinimas:
Keitimas x{\normalsize x} = π2{\normalsize \frac{\pi}{2}}.
 
 1
/ 2
* cos( 
 2* π
/ 2
)
+sin( 
 π
/ 2
)
 = 12cos(2π2)+sin(π2)\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{2})+sin(\frac{\pi}{2}) = 
2π2{\normalsize \frac{2\cdot \pi}{2}} = π{\normalsize \pi}
 
 1
/ 2
* cos(π)
+sin( 
 π
/ 2
)
 = 12cos(π)+sin(π2)\frac{1}{2}\cdot cos(\pi)+sin(\frac{\pi}{2}) = 
cos(π){\normalsize cos(\pi)} = 1{\normalsize -1}
- 
 1
/ 2
* 1
+sin( 
 π
/ 2
)
 = 121+sin(π2)-\frac{1}{2}\cdot 1+sin(\frac{\pi}{2}) = 
121{\normalsize \frac{1}{2}\cdot 1} = 12{\normalsize \frac{1}{2}}
- 
 1
/ 2
+sin( 
 π
/ 2
)
 = 12+sin(π2)-\frac{1}{2}+sin(\frac{\pi}{2}) = 
sin(π2){\normalsize sin(\frac{\pi}{2})} = 1{\normalsize 1}
- 
 1
/ 2
+1
 = 12+1-\frac{1}{2}+1 = 
12+1{\normalsize -\frac{1}{2}+1} = 12{\normalsize \frac{1}{2}}
 
 1
/ 2
12\frac{1}{2}
12cos(2π2)+sin(π2)\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{2})+sin(\frac{\pi}{2})  = 
12cos(π)+sin(π2)\frac{1}{2}\cdot cos(\pi)+sin(\frac{\pi}{2})  = 
12+sin(π2)-\frac{1}{2}+sin(\frac{\pi}{2})  = 
12+1-\frac{1}{2}+1  = 
12\frac{1}{2}

Kai x =  π6\frac{\pi}{6}

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = 12cos(2x)+sin(x)\frac{1}{2}\cdot cos(2\cdot x)+sin(x) = 
Paaiškinimas:
Keitimas x{\normalsize x} = π6{\normalsize \frac{\pi}{6}}.
 
 1
/ 2
* cos( 
 2* π
/ 6
)
+sin( 
 π
/ 6
)
 = 12cos(2π6)+sin(π6)\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{6})+sin(\frac{\pi}{6}) = 
2π6{\normalsize \frac{2\cdot \pi}{6}} = π3{\normalsize \frac{\pi}{3}}
 
 1
/ 2
* cos( 
 π
/ 3
)
+sin( 
 π
/ 6
)
 = 12cos(π3)+sin(π6)\frac{1}{2}\cdot cos(\frac{\pi}{3})+sin(\frac{\pi}{6}) = 
cos(π3){\normalsize cos(\frac{\pi}{3})} = 12{\normalsize \frac{1}{2}}
 
 1
/ 2
* 
 1
/ 2
+sin( 
 π
/ 6
)
 = 1212+sin(π6)\frac{1}{2}\cdot \frac{1}{2}+sin(\frac{\pi}{6}) = 
1212{\normalsize \frac{1}{2}\cdot \frac{1}{2}} = 14{\normalsize \frac{1}{4}}
 
 1
/ 4
+sin( 
 π
/ 6
)
 = 14+sin(π6)\frac{1}{4}+sin(\frac{\pi}{6}) = 
sin(π6){\normalsize sin(\frac{\pi}{6})} = 12{\normalsize \frac{1}{2}}
 
 1
/ 4
+ 
 1
/ 2
 = 14+12\frac{1}{4}+\frac{1}{2} = 
14+12{\normalsize \frac{1}{4}+\frac{1}{2}} = 34{\normalsize \frac{3}{4}}
 
 3
/ 4
34\frac{3}{4}
12cos(2π6)+sin(π6)\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{6})+sin(\frac{\pi}{6})  = 
12cos(π3)+sin(π6)\frac{1}{2}\cdot cos(\frac{\pi}{3})+sin(\frac{\pi}{6})  = 
1212+sin(π6)\frac{1}{2}\cdot \frac{1}{2}+sin(\frac{\pi}{6})  = 
14+sin(π6)\frac{1}{4}+sin(\frac{\pi}{6})  = 
14+12\frac{1}{4}+\frac{1}{2}  = 
34\frac{3}{4}

Pati didžiausia reikšmė 34\frac{3}{4}

Atsakymas: 34\frac{3}{4}

27 uždavinys29 uždavinys