Apskaičiuokite $$\sqrt[6]{14-6\cdot \sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$
Sprendimas.
14- 6* saknis(
5))* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = 
14- 6* saknis(
5))* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{14-6\cdot \sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 





9+5- 6* saknis(
5))* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{9+5-6\cdot \sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 





9- 6* saknis(
5)+5)* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{9-6\cdot \sqrt {5}+5}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 





3^2- 6* saknis(
5)+5)* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{3^{2}-6\cdot \sqrt {5}+5}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 





3^2- 2* 3* saknis(
5)+5)* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{3^{2}-2\cdot 3\cdot \sqrt {5}+5}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 






Paaiškinimas:
(3-saknis(
5))^2)* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[6]{(3-\sqrt {5})^{2}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 






Paaiškinimas:
3-saknis(
5))* saknis(3,
(3+saknis(
5)))* saknis(3,
2) = $$\sqrt[3]{3-\sqrt {5}}\cdot \sqrt[3]{(3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 






Paaiškinimas:
(3-saknis(
5))* ((3+saknis(
5))))* saknis(3,
2) = $$\sqrt[3]{(3-\sqrt {5})\cdot ((3+\sqrt {5}))}\cdot \sqrt[3]{2}$$ = 





(3-saknis(
5))* (3+saknis(
5)))* saknis(3,
2) = $$\sqrt[3]{(3-\sqrt {5})\cdot (3+\sqrt {5})}\cdot \sqrt[3]{2}$$ = 






Paaiškinimas:
( 3^2- saknis(
5)^2))* saknis(3,
2) = $$\sqrt[3]{(3^{2}-\sqrt {5}^{2})}\cdot \sqrt[3]{2}$$ = 





( 3^2-5))* saknis(3,
2) = $$\sqrt[3]{(3^{2}-5)}\cdot \sqrt[3]{2}$$ = 





(4))* saknis(3,
2) = $$\sqrt[3]{(4)}\cdot \sqrt[3]{2}$$ = 





4)* saknis(3,
2) = $$\sqrt[3]{4}\cdot \sqrt[3]{2}$$ = 






Paaiškinimas:
4* 2) = $$\sqrt[3]{4\cdot 2}$$ = 





8) = $$\sqrt[3]{8}$$ = 











Atsakymas: 2